If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
2 | 1 |
Mixtures, Elements and Compounds
|
Structure of the atom - General structure.
Structure of the atom - Meaning of an atom |
By the end of the
lesson, the learner
should be able to:
- Describe the general structure of an atom - Identify the subatomic particles in an atom - Show interest in exploring the structure of atoms |
- Observe a diagram showing the structure of an atom
- Discuss in groups the general structure of atoms - Identify the particles shown in the atom |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 1)
- Charts showing structure of an atom - Digital resources - Models of atoms - Mentor Integrated Science (pg. 2) - Charts showing structure of atoms |
- Observation
- Oral questions
- Written assignments
|
|
2 | 2 |
Mixtures, Elements and Compounds
|
Structure of the atom - Atomic number
|
By the end of the
lesson, the learner
should be able to:
- Define atomic number of elements - Determine the atomic number of given elements - Appreciate the significance of atomic number in classifying elements |
- Complete a table showing atomic numbers of elements
- Compare atomic numbers of different elements - Discuss the significance of atomic numbers |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 3)
- Periodic table - Digital resources - Charts |
- Observation
- Written work
- Peer assessment
|
|
2 | 3 |
Mixtures, Elements and Compounds
|
Structure of the atom - Mass number
Structure of the atom - Representation of elements |
By the end of the
lesson, the learner
should be able to:
- Define mass number of elements - Calculate the mass number of given elements - Show interest in determining mass numbers of elements |
- Complete a table to determine mass numbers of different elements
- Calculate mass numbers using protons and neutrons - Work out mass numbers for various elements |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 4)
- Periodic table - Digital resources - Charts showing atomic structure - Mentor Integrated Science (pg. 5) - Charts |
- Observation
- Oral questions
- Written assignments
|
|
2 | 4 |
Mixtures, Elements and Compounds
|
Structure of the atom - Energy levels
|
By the end of the
lesson, the learner
should be able to:
- Identify energy levels in atoms - Explain how electrons are organized in energy levels - Show interest in understanding atomic structure |
- Search for information on energy levels in atoms
- Discuss how energy levels are organized in atoms - Study diagrams showing energy levels |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 6)
- Digital resources - Charts showing energy levels - Models |
- Observation
- Oral questions
- Written assignments
|
|
2 | 5 |
Mixtures, Elements and Compounds
|
Structure of the atom - Electron arrangement
Structure of the atom - Electron arrangements of elements |
By the end of the
lesson, the learner
should be able to:
- Describe electron arrangement in atoms - Draw electron arrangement diagrams for different elements - Show interest in understanding electron configurations |
- Search for information on electron arrangement of elements
- Discuss the organization of electrons in energy levels - Draw electron arrangement diagrams for various elements |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 6)
- Digital resources - Charts showing electron arrangements - Models - Mentor Integrated Science (pg. 7) |
- Observation
- Practical work
- Written assignments
|
|
3 | 1 |
Mixtures, Elements and Compounds
|
Structure of the atom - Energy level diagrams
|
By the end of the
lesson, the learner
should be able to:
- Interpret energy level diagrams - Draw energy level diagrams for different elements - Show interest in representing atomic structures |
- Study energy level diagrams in the course book
- Practice drawing energy level diagrams - Discuss the meaning of energy level diagrams |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 7)
- Digital resources - Charts showing energy level diagrams - Models |
- Observation
- Practical work
- Written assignments
|
|
3 | 2 |
Mixtures, Elements and Compounds
|
Structure of the atom - Electron arrangement practice
Structure of the atom - Modelling structures |
By the end of the
lesson, the learner
should be able to:
- Draw electron arrangements for more complex elements - Write electron arrangements numerically - Appreciate the systematic organization of electrons |
- Complete practice exercises on electron arrangements
- Draw electron arrangements for various elements - Share work with peers for feedback |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 8)
- Periodic table - Digital resources - Exercise sheets - Locally available materials - Sample models |
- Observation
- Written work
- Peer assessment
|
|
3 | 3 |
Mixtures, Elements and Compounds
|
Structure of the atom - Metals and non-metals identification
|
By the end of the
lesson, the learner
should be able to:
- Identify metals and non-metals using electron arrangement - Explain the relationship between outer electrons and metallic properties - Show interest in classifying elements |
- Study examples of elements with their electron arrangements
- Identify patterns in electron arrangements of metals and non-metals - Classify given elements as metals or non-metals |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 9)
- Digital resources - Periodic table - Charts showing electron arrangements |
- Observation
- Written work
- Oral questions
|
|
3 | 4 |
Mixtures, Elements and Compounds
|
Structure of the atom - Metals and non-metals classification
Structure of the atom - Assessment |
By the end of the
lesson, the learner
should be able to:
- Classify elements into metals and non-metals using electron arrangement - Explain the relationship between electron arrangement and metallic properties - Appreciate the diversity of elements |
- Discuss classification of elements based on electron arrangements
- Complete tables to show metals and non-metals - Match elements to their classifications |
How is the structure of the atom important?
|
- Mentor Integrated Science (pg. 9)
- Digital resources - Periodic table - Charts showing classification of elements - Mentor Integrated Science (pg. 10) - Assessment items - Models |
- Observation
- Written work
- Oral questions
|
|
3 | 5 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Identifying metals
|
By the end of the
lesson, the learner
should be able to:
- Identify metals and non-metals in the environment - Classify materials as metallic or non-metallic - Appreciate the variety of materials in the environment |
- Observe pictures of items made from different materials
- Identify and classify materials as metallic or non-metallic - Walk around the school to identify metallic and non-metallic items |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 15)
- Samples of metallic and non-metallic items - Digital resources - Pictures |
- Observation
- Oral questions
- Written assignments
|
|
4 | 1 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Classification of materials
Metals and Alloys - Physical properties (state) |
By the end of the
lesson, the learner
should be able to:
- Classify different materials into metals and non-metals - Explain reasons for classification based on observable properties - Show interest in materials in the environment |
- Walk around the school compound to observe materials
- Classify observed materials as metallic or non-metallic - Record findings and share with classmates |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 15)
- Samples of different materials - Digital resources - Worksheets - Mentor Integrated Science (pg. 16) - Samples of different metals - Charts |
- Observation
- Field activity
- Written reports
|
|
4 | 2 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Malleability
|
By the end of the
lesson, the learner
should be able to:
- Investigate the malleability of different metals - Explain the property of malleability in metals - Observe safety measures when investigating metal properties |
- Carry out an investigation on malleability of different metals
- Record observations when metals are hammered - Compare the malleability of different metals |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 17)
- Samples of different metals - Hammer or mallet - Safety equipment |
- Observation
- Practical work
- Written reports
|
|
4 | 3 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Ductility
Metals and Alloys - Electrical conductivity |
By the end of the
lesson, the learner
should be able to:
- Investigate the ductility of different metals - Explain the property of ductility in metals - Value safety when investigating metal properties |
- Carry out an investigation on ductility of different metals
- Record observations when metals are stretched - Compare the ductility of different metals |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 17)
- Metal wires - Pliers - Safety equipment - Mentor Integrated Science (pg. 18) - Simple circuit components - Metal samples - Digital resources |
- Observation
- Practical work
- Written reports
|
|
4 | 4 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Thermal conductivity
|
By the end of the
lesson, the learner
should be able to:
- Investigate the thermal conductivity of different metals - Explain why metals conduct heat - Observe safety measures when using heat sources |
- Set up experiments to test thermal conductivity
- Record observations on how different metals conduct heat - Compare the thermal conductivity of different metals |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 19)
- Metal samples - Heat source - Candle wax or cooking fat |
- Observation
- Practical work
- Written reports
|
|
4 | 5 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Causes of rusting
Metals and Alloys - Effects of rusting |
By the end of the
lesson, the learner
should be able to:
- Investigate causes of rusting in iron - Explain conditions necessary for rusting to occur - Appreciate the importance of understanding rusting |
- Set up experiments to investigate rusting
- Record observations on rusting under different conditions - Discuss factors that cause rusting |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 20)
- Iron nails - Test tubes - Water and oil - Digital resources - Mentor Integrated Science (pg. 21) - Pictures of rusted items - Actual rusted items |
- Observation
- Practical work
- Written reports
|
|
5 | 1 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Control of rusting
|
By the end of the
lesson, the learner
should be able to:
- Describe methods of preventing rusting - Explain how different methods prevent rusting - Appreciate the importance of preventing rusting |
- Search for information on ways of preventing rusting
- Discuss different methods of preventing rusting - Share findings on rust prevention |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 22)
- Digital resources - Items with rust prevention - Pictures |
- Observation
- Oral presentations
- Written assignments
|
|
5 | 2 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Investigating rusting
Metals and Alloys - Uses of metals |
By the end of the
lesson, the learner
should be able to:
- Carry out an investigation on rusting in the environment - Record observations on rusted items - Show concern about the effects of rusting |
- Walk around the school or neighborhood to observe rusted items
- Record observations on rusted items - Write a report on effects of rusting |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 22)
- Camera (if available) - Observation sheets - Rusted items - Mentor Integrated Science (pg. 23) - Digital resources - Pictures showing uses of metals - Charts |
- Observation
- Field activity
- Written reports
|
|
5 | 3 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Identifying alloys
|
By the end of the
lesson, the learner
should be able to:
- Identify items made from alloys in the locality - Explain why certain items are made from alloys - Show interest in exploring uses of alloys |
- Observe pictures of items made from alloys
- Discuss why certain items are made from alloys - Identify items made from alloys in the school |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 24)
- Samples of items made from alloys - Digital resources - Pictures |
- Observation
- Oral questions
- Project work
|
|
5 | 4 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Alloys in locality
Metals and Alloys - Composition of alloys |
By the end of the
lesson, the learner
should be able to:
- Collect items made from alloys in the locality - Identify the alloys used to make different items - Appreciate the use of alloys in everyday items |
- Walk around school to identify items made from alloys
- Collect or take photographs of items made from alloys - Discuss why the items are made from alloys |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 24)
- Items made from alloys - Camera (if available) - Digital resources - Mentor Integrated Science (pg. 25) - Pictures of different alloys - Charts |
- Observation
- Field activity
- Project work
|
|
5 | 5 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Uses of alloys
|
By the end of the
lesson, the learner
should be able to:
- Identify uses of common alloys in everyday life - Match alloys to their appropriate uses - Appreciate the importance of alloys in daily life |
- Observe pictures showing uses of common alloys
- Discuss uses of different alloys - Search for information on uses of alloys |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 26)
- Digital resources - Pictures showing uses of alloys - Charts |
- Observation
- Oral presentations
- Written assignments
|
|
6 | 1 |
Mixtures, Elements and Compounds
|
Metals and Alloys - Observing alloy uses
Metals and Alloys - Assessment |
By the end of the
lesson, the learner
should be able to:
- Observe uses of alloys in the locality - Explain advantages of using alloys for specific purposes - Show interest in applications of alloys |
- Walk around the school or locality to observe uses of alloys
- Record observations on uses of alloys - Discuss findings with classmates |
How are alloys important in day-to-day life?
|
- Mentor Integrated Science (pg. 27)
- Observation sheets - Items made from alloys - Digital resources - Mentor Integrated Science (pg. 32) - Assessment items - Samples of metals and alloys |
- Observation
- Field activity
- Written reports
|
|
6 | 2 |
Mixtures, Elements and Compounds
|
Water hardness - Physical properties
|
By the end of the
lesson, the learner
should be able to:
- Collect water samples from different sources - Compare water from different sources - Appreciate the variety of water sources in the locality |
- Tour the locality to observe water sources
- Collect water samples from different sources - Compare water samples in terms of appearance, odor, taste and boiling point |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 33)
- Water samples from different sources - Containers for samples - Charts |
- Observation
- Practical work
- Written reports
|
|
6 | 3 |
Mixtures, Elements and Compounds
|
Water hardness - Water sources
Water hardness - Colour and odour |
By the end of the
lesson, the learner
should be able to:
- Identify different sources of water in the locality - Compare characteristics of water from different sources - Show interest in water sources in the environment |
- Discuss different sources of water in the locality
- Compare characteristics of water from different sources - Record findings in a table |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 33)
- Water samples - Digital resources - Charts - Mentor Integrated Science (pg. 34) - Clear containers - White paper |
- Observation
- Oral discussions
- Written assignments
|
|
6 | 4 |
Mixtures, Elements and Compounds
|
Water hardness - Investigating color and odor
|
By the end of the
lesson, the learner
should be able to:
- Investigate the color and odor of different water samples - Record observations on water characteristics - Appreciate the importance of clean water |
- Carry out experiments to test color and odor of water samples
- Record observations in a table - Draw conclusions about water quality based on observations |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 34)
- Water samples - Clear containers - White paper - Worksheets |
- Observation
- Practical work
- Written reports
|
|
6 | 5 |
Mixtures, Elements and Compounds
|
Water hardness - Boiling point
Water hardness - Hard and soft water |
By the end of the
lesson, the learner
should be able to:
- Investigate the boiling point of water - Explain why water boils at a specific temperature - Observe safety measures when using heat sources |
- Set up apparatus to determine boiling point of water
- Measure temperature changes as water heats - Record observations about boiling water |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 35)
- Thermometer - Heat source - Beaker - Water - Mentor Integrated Science (pg. 36) - Soap - Water samples - Beakers - Digital resources |
- Observation
- Practical work
- Written reports
|
|
7 | 1 |
Mixtures, Elements and Compounds
|
Water hardness - Differences
|
By the end of the
lesson, the learner
should be able to:
- Explain what makes water hard or soft - Identify sources of hard and soft water - Appreciate differences in water properties |
- Discuss what causes water hardness
- Identify sources of hard and soft water - Compare characteristics of hard and soft water |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 37)
- Digital resources - Charts - Water samples |
- Observation
- Oral presentations
- Written assignments
|
|
7 | 2 |
Mixtures, Elements and Compounds
|
Water hardness - Advantages of soft water
|
By the end of the
lesson, the learner
should be able to:
- Identify advantages of soft water - Debate on uses of soft water - Appreciate the value of soft water in certain applications |
- Debate on advantages of soft water
- Discuss benefits of using soft water for cleaning - Research advantages of soft water |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 38)
- Digital resources - Charts - Debate materials |
- Observation
- Debate assessment
- Written assignments
|
|
7 | 3 |
Mixtures, Elements and Compounds
|
Water hardness - Hard water advantages
Water hardness - Methods of softening |
By the end of the
lesson, the learner
should be able to:
- Identify advantages of hard water - Discuss health benefits of minerals in hard water - Appreciate the value of hard water in certain applications |
- Discuss benefits of minerals in hard water
- Research advantages of hard water - Debate on usefulness of hard water |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 39)
- Digital resources - Charts - Research materials - Mentor Integrated Science (pg. 40) - Water samples |
- Observation
- Oral presentations
- Written assignments
|
|
7 | 4 |
Mixtures, Elements and Compounds
|
Water hardness - Boiling method
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate how to soften hard water by boiling - Explain how boiling removes hardness - Observe safety measures when using heat sources |
- Carry out experiment to soften hard water by boiling
- Test lathering ability of water before and after boiling - Explain observations from the experiment |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 41)
- Hard water samples - Heat source - Beakers - Soap |
- Observation
- Practical work
- Written reports
|
|
7 | 5 |
Mixtures, Elements and Compounds
|
Water hardness - Chemical method
Water hardness - Distillation method |
By the end of the
lesson, the learner
should be able to:
- Demonstrate how to soften hard water using chemicals - Explain how chemicals remove hardness - Show care when handling chemicals |
- Carry out experiment to soften hard water using chemicals
- Test lathering ability before and after treatment - Explain observations from the experiment |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 42)
- Hard water samples - Washing soda - Beakers - Soap - Mentor Integrated Science (pg. 44) - Distillation apparatus - Heat source |
- Observation
- Practical work
- Written reports
|
|
8 | 1 |
Mixtures, Elements and Compounds
|
Water hardness - Applications
|
By the end of the
lesson, the learner
should be able to:
- Identify applications of hard and soft water in daily life - Match water types to their appropriate uses - Appreciate the different uses of water based on hardness |
- Search for information on applications of hard and soft water
- Discuss practical uses of different water types - Match water types to specific applications |
Why is hard water preferred for drinking?
|
- Mentor Integrated Science (pg. 45)
- Digital resources - Charts - Pictures of water applications |
- Observation
- Oral presentations
- Written assignments
|
|
8 | 2 |
Force and Energy
|
Curved mirrors - Types of curved mirrors
Curved mirrors - Terms associated with concave mirrors |
By the end of the
lesson, the learner
should be able to:
- Describe the types of curved mirrors - Differentiate between concave and convex mirrors - Appreciate the applications of curved mirrors in day to day life |
- Discuss the types of curved mirrors (concave, convex, and parabolic surfaces)
- Use shiny spoons to demonstrate the difference between concave and convex reflective surfaces - Observe and record how images are formed by the inner and outer surfaces of the spoon |
How are curved mirrors used in day to day life?
|
- Mentor Integrated Science (pg. 133)
- Shiny spoons - Digital resources on curved mirrors - Mentor Integrated Science (pg. 135) - Digital resources - Charts showing the structure of a concave mirror |
- Observation
- Oral questions
- Written assignments
|
|
8 | 3 |
Force and Energy
|
Curved mirrors - Determining focal length of concave mirror
|
By the end of the
lesson, the learner
should be able to:
- Explain how to determine the focal length of a concave mirror - Perform an experiment to determine the focal length of a concave mirror - Value the practical approach in determining properties of mirrors |
- Set up a concave mirror to focus an image of a distant object on a screen
- Measure the distance between the mirror and the screen - Record and analyze the results to determine the focal length |
Why is it important to know the focal length of a concave mirror?
|
- Mentor Integrated Science (pg. 137)
- Concave mirrors - Rulers - White screens or plain paper - Mirror holders |
- Observation
- Practical assessment
- Written reports
|
|
8 | 4 |
Force and Energy
|
Curved mirrors - Ray diagrams for concave mirrors
Curved mirrors - Image formation by concave mirrors (beyond C) |
By the end of the
lesson, the learner
should be able to:
- Draw conventional ray diagrams for concave mirrors - Identify the four special rays used in ray diagrams - Show interest in the ray diagram approach to locate images |
- Draw conventional ray diagrams of concave mirrors
- Identify and draw the four types of rays used in ray diagrams (ray through center of curvature, ray parallel to principal axis, ray through focus, ray through pole) - Analyze how these rays help locate images |
How do ray diagrams help in locating images formed by concave mirrors?
|
- Mentor Integrated Science (pg. 140)
- Plain paper - Rulers - Pencils - Drawing instruments - Mentor Integrated Science (pg. 143) - Concave mirrors - Digital resources |
- Observation
- Drawing assessment
- Written assignments
|
|
8 | 5 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (at C)
|
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed at C - Describe the characteristics of images formed - Show curiosity in investigating image formation |
- Draw ray diagrams to locate images when objects are placed at the center of curvature
- Determine the characteristics of images formed - Verify the results through practical observation |
What are the characteristics of images formed when objects are placed at the center of curvature?
|
- Mentor Integrated Science (pg. 144)
- Concave mirrors - Drawing instruments - Digital resources |
- Observation
- Ray diagram assessment
- Written descriptions
|
|
9 | 1 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (between C and F)
Curved mirrors - Image formation by concave mirrors (at F) |
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed between C and F - Describe the characteristics of images formed - Appreciate the systematic approach in determining image properties |
- Draw ray diagrams to locate images when objects are placed between the center of curvature and the principal focus
- Determine the characteristics of images formed - Verify the results through practical observation |
What are the characteristics of images formed when objects are placed between the center of curvature and the principal focus?
|
- Mentor Integrated Science (pg. 145)
- Concave mirrors - Drawing instruments - Digital resources - Mentor Integrated Science (pg. 147) |
- Observation
- Ray diagram assessment
- Written descriptions
|
|
9 | 2 |
Force and Energy
|
Curved mirrors - Image formation by concave mirrors (between F and P)
|
By the end of the
lesson, the learner
should be able to:
- Draw ray diagrams to locate images when objects are placed between F and P - Describe the characteristics of images formed - Appreciate the practical applications of this image formation |
- Draw ray diagrams to locate images when objects are placed between the principal focus and the pole
- Determine the characteristics of images formed - Discuss practical applications like magnifying mirrors |
What are the characteristics of images formed when objects are placed between the principal focus and the pole?
|
- Mentor Integrated Science (pg. 148)
- Concave mirrors - Drawing instruments - Digital resources |
- Observation
- Ray diagram assessment
- Written descriptions
|
|
9 | 3 |
Force and Energy
|
Curved mirrors - Characteristics of images formed by concave mirrors
Curved mirrors - Locating images formed by concave mirrors experimentally |
By the end of the
lesson, the learner
should be able to:
- Summarize characteristics of images formed by concave mirrors for different object positions - Create a comprehensive table of image characteristics - Value the systematic organization of scientific information |
- Create a summary table of image characteristics for different object positions (at infinity, beyond C, at C, between C and F, at F, between F and P)
- Discuss the patterns and relationships observed - Compare theoretical predictions with practical observations |
How do image characteristics vary with object position for concave mirrors?
|
- Mentor Integrated Science (pg. 149)
- Concave mirrors - Digital resources - Previous ray diagrams - Mentor Integrated Science (pg. 150) - Mirror holders - Screens - Candles or light sources - Rulers |
- Observation
- Table completion assessment
- Written assignments
|
|
9 | 4 |
Force and Energy
|
Curved mirrors - Terms associated with convex mirrors
|
By the end of the
lesson, the learner
should be able to:
- Identify the terms associated with convex mirrors - Compare the structure of convex mirrors with concave mirrors - Appreciate the differences between concave and convex mirrors |
- Discuss the terms associated with convex mirrors (aperture, center of curvature, pole, principal axis, principal focus, focal length)
- Draw and label the parts of a convex mirror - Compare terms used in convex mirrors with those in concave mirrors |
How does the structure of convex mirrors differ from concave mirrors?
|
- Mentor Integrated Science (pg. 153)
- Convex mirrors - Digital resources - Charts showing the structure of convex mirrors |
- Observation
- Drawings and labels
- Written assignments
|
|
9 | 5 |
Force and Energy
|
Curved mirrors - Ray diagrams for convex mirrors
Curved mirrors - Image formation by convex mirrors |
By the end of the
lesson, the learner
should be able to:
- Draw conventional ray diagrams for convex mirrors - Identify the four special rays used in ray diagrams for convex mirrors - Show interest in the ray diagram approach to locate images |
- Draw conventional ray diagrams of convex mirrors
- Identify and draw the four types of rays used in ray diagrams for convex mirrors - Analyze how these rays help locate images |
How do ray diagrams help in locating images formed by convex mirrors?
|
- Mentor Integrated Science (pg. 154)
- Plain paper - Rulers - Pencils - Drawing instruments - Mentor Integrated Science (pg. 156) - Convex mirrors - Digital resources |
- Observation
- Drawing assessment
- Written assignments
|
|
10 | 1 |
Force and Energy
|
Curved mirrors - Locating images formed by convex mirrors experimentally
|
By the end of the
lesson, the learner
should be able to:
- Set up an experiment to locate images formed by convex mirrors - Record and analyze experimental observations - Show interest in practical verification of theoretical concepts |
- Set up experiments to observe images formed by convex mirrors
- Record observations about the nature, size, and position of images - Compare experimental results with theoretical predictions |
How can we experimentally verify the characteristics of images formed by convex mirrors?
|
- Mentor Integrated Science (pg. 159)
- Convex mirrors - Mirror holders - Objects of various sizes - Rulers |
- Observation
- Practical assessment
- Written reports
|
|
10 | 2 |
Force and Energy
|
Curved mirrors - Applications of curved mirrors (concave mirrors)
Curved mirrors - Applications of curved mirrors (convex mirrors) |
By the end of the
lesson, the learner
should be able to:
- Identify applications of concave mirrors in daily life - Explain how the properties of concave mirrors make them suitable for specific applications - Appreciate the practical importance of curved mirrors |
- Research and discuss applications of concave mirrors (magnifying mirrors, dentist mirrors, solar concentrators, projectors)
- Explain how the image-forming properties of concave mirrors relate to their applications - Demonstrate applications using actual mirrors where possible |
What are the practical applications of concave mirrors in our daily lives?
|
- Mentor Integrated Science (pg. 161)
- Concave mirrors - Digital resources - Examples of devices using concave mirrors - Mentor Integrated Science (pg. 162) - Convex mirrors - Examples of devices using convex mirrors |
- Observation
- Oral presentations
- Written assignments
|
|
10 | 3 |
Force and Energy
|
Curved mirrors - Applications of curved mirrors (parabolic reflectors)
|
By the end of the
lesson, the learner
should be able to:
- Identify applications of parabolic reflectors in daily life - Explain how the focusing properties of parabolic reflectors make them suitable for specific applications - Show interest in advanced applications of curved mirrors |
- Research and discuss applications of parabolic reflectors (solar cookers, car headlamps, photography equipment)
- Explain the special focusing properties of parabolic surfaces - Demonstrate applications using models or examples |
What are the practical applications of parabolic reflectors in our daily lives?
|
- Mentor Integrated Science (pg. 163)
- Digital resources - Examples of devices using parabolic reflectors |
- Observation
- Oral presentations
- Group projects
|
|
10 | 4 |
Force and Energy
|
Waves - Meaning of waves
Waves - Generating waves in nature |
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of waves in science - Describe waves as a transmission of disturbance that carries energy - Show interest in understanding wave phenomena in nature |
- Read the story about John and ripples in the dam
- Discuss what happens when an object is dropped in still water - Observe the movement of water waves and how they transport energy without moving matter |
How are waves applied in our day to day life?
|
- Mentor Integrated Science (pg. 166)
- Basin with water - Small objects to drop in water - Digital resources - Mentor Integrated Science (pg. 167) - Rope - Speakers - Rice or sand |
- Observation
- Oral questions
- Written assignments
|
|
10 | 5 |
Force and Energy
|
Waves - Transverse and longitudinal waves
|
By the end of the
lesson, the learner
should be able to:
- Differentiate between transverse and longitudinal waves - Demonstrate the generation of both types of waves using a slinky spring - Show interest in classifying waves based on particle movement |
- Use a slinky spring to demonstrate transverse waves (moving left to right)
- Use a slinky spring to demonstrate longitudinal waves (moving to-and-fro) - Compare the motion of particles in both types of waves - Observe and record the differences between these wave types |
What is the difference between transverse and longitudinal waves?
|
- Mentor Integrated Science (pg. 169)
- Slinky springs - Cloth pieces for marking - Digital resources showing wave motion |
- Observation
- Practical assessment
- Drawings and diagrams
- Written reports
|
|
11 | 1 |
Force and Energy
|
Waves - Classifying waves
Waves - Amplitude and wavelength |
By the end of the
lesson, the learner
should be able to:
- Classify various waves into transverse and longitudinal categories - Give examples of transverse and longitudinal waves in nature - Value the importance of classification in scientific study |
- Study different wave examples provided in the textbook
- Classify the waves into transverse and longitudinal categories - Research and identify real-world examples of both types of waves - Create a classification chart of common waves |
How are waves classified based on particle movement?
|
- Mentor Integrated Science (pg. 171)
- Digital resources - Charts showing different wave types - Wave demonstration equipment - Mentor Integrated Science (pg. 172) - Wave diagrams - Rulers - Graph paper - Digital simulations |
- Observation
- Classification exercises
- Oral presentations
- Written assignments
|
|
11 | 2 |
Force and Energy
|
Waves - Frequency and period
|
By the end of the
lesson, the learner
should be able to:
- Define frequency and period of waves - Describe the relationship between frequency and period - Show interest in quantitative aspects of wave motion |
- Search for the meaning of frequency and period using digital or print resources
- Discuss the motion of a mass on a string to illustrate oscillation - Create displacement-time graphs for oscillating objects - Establish the relationship between frequency and period |
What is the relationship between frequency and period in wave motion?
|
- Mentor Integrated Science (pg. 173)
- Digital resources - String and masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph analysis
- Written assignments
|
|
11 | 3 |
Force and Energy
|
Waves - Practical: Period of waves
Waves - Wave speed |
By the end of the
lesson, the learner
should be able to:
- Determine the period of oscillation experimentally - Calculate frequency from period measurements - Value precision and accuracy in scientific measurements |
- Set up an experiment with a mass on a string
- Time multiple oscillations and calculate average period - Calculate frequency from period measurements - Record and analyze results |
How is the period of oscillation measured experimentally?
|
- Mentor Integrated Science (pg. 175)
- Stands with clamps - Strings - Masses - Stopwatches - Mentor Integrated Science (pg. 176) - Calculators - Wave speed problems - Digital resources - Wave demonstration equipment |
- Observation
- Practical assessment
- Data analysis
- Written reports
|
|
11 | 4 |
Force and Energy
|
Waves - Phase of waves
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of phase in wave motion - Differentiate between in-phase and out-of-phase oscillations - Appreciate the mathematical precision in describing wave relationships |
- Conduct experiments with identical pendulums oscillating in phase
- Observe pendulums with same frequency but different amplitudes - Compare pendulums oscillating in opposite directions - Create and analyze displacement-time graphs for different phase relationships |
What determines whether waves are in phase or out of phase?
|
- Mentor Integrated Science (pg. 178)
- Stands with clamps - Strings and identical masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph interpretation
- Written reports
|
|
11 | 5 |
Force and Energy
|
Waves - Oscillation in phase
Waves - Oscillation out of phase |
By the end of the
lesson, the learner
should be able to:
- Set up pendulums oscillating in phase - Compare the displacement-time graphs of in-phase oscillations - Show curiosity in investigating wave phenomena |
- Set up identical pendulums oscillating in phase
- Record period and create displacement-time graphs - Analyze the characteristics of in-phase oscillations - Compare theoretical and experimental results |
What are the characteristics of oscillations that are in phase?
|
- Mentor Integrated Science (pg. 179)
- Pendulum apparatus - Stopwatches - Measuring equipment - Graph paper - Mentor Integrated Science (pg. 181) |
- Observation
- Practical assessment
- Graph construction and analysis
- Written reports
|
|
12 | 1 |
Force and Energy
|
Waves - Characteristics of waves: straight-line motion
|
By the end of the
lesson, the learner
should be able to:
- Identify parts of a ripple tank - Demonstrate that waves travel in straight lines - Show interest in systematic investigation of wave properties |
- Identify parts of a ripple tank
- Set up a ripple tank to demonstrate straight-line motion of waves - Observe and trace wave fronts on paper - Analyze the direction of wave propagation |
How do we demonstrate that waves travel in straight lines?
|
- Mentor Integrated Science (pg. 183)
- Ripple tank - Water - Paper for tracing - Rulers |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
12 | 2 |
Force and Energy
|
Waves - Characteristics of waves: reflection
Waves - Characteristics of waves: bending |
By the end of the
lesson, the learner
should be able to:
- Demonstrate reflection of waves in a ripple tank - Verify that waves obey the laws of reflection - Appreciate that various wave types follow similar behavior patterns |
- Set up a ripple tank with barriers to demonstrate wave reflection
- Observe reflection patterns with barriers at different angles - Compare the incident and reflected waves - Verify the laws of reflection for water waves |
How are waves reflected at barriers?
|
- Mentor Integrated Science (pg. 184)
- Ripple tank - Water - Metal strips as reflectors - Paper for tracing wave patterns - Mentor Integrated Science (pg. 185) - Glass plate to create shallow region |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
12 | 3 |
Force and Energy
|
Waves - Characteristics of waves: diffraction
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate diffraction of waves around obstacles - Explain how gap size affects diffraction patterns - Appreciate diffraction as a fundamental wave property |
- Set up a ripple tank with barriers having gaps of different sizes
- Generate waves and observe their behavior passing through gaps - Compare diffraction patterns with different gap widths - Relate observations to wave theory |
How do waves behave when passing through gaps or around obstacles?
|
- Mentor Integrated Science (pg. 186)
- Ripple tank - Water - Metal barriers with adjustable gaps - Paper for tracing wave patterns |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
12 | 4 |
Force and Energy
|
Waves - Remote sensing in relation to waves
Waves - Transmission, absorption and reflection in remote sensing |
By the end of the
lesson, the learner
should be able to:
- Describe remote sensing process - Explain the role of waves in remote sensing - Show interest in technological applications of wave properties |
- Search for information about remote sensing using digital resources
- Discuss the remote sensing process and how waves are used - Identify where absorption and reflection occur in remote sensing - Prepare and present findings on remote sensing |
How is remote sensing related to waves?
|
- Mentor Integrated Science (pg. 187)
- Digital resources - Diagrams of remote sensing processes - Video clips on remote sensing - Mentor Integrated Science (pg. 188) - Examples of remote sensing data |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
|
12 | 5 |
Force and Energy
|
Waves - Applications of waves in everyday life
|
By the end of the
lesson, the learner
should be able to:
- Identify various applications of waves in everyday life - Explain how wave properties are utilized in different technologies - Appreciate the importance of waves in modern society |
- Research applications of waves in everyday life (communication, medical imaging, entertainment)
- Discuss how specific wave properties are utilized in different applications - Present findings on wave applications - Relate wave theory to practical applications |
What are the practical applications of waves in our everyday life?
|
- Mentor Integrated Science (pg. 190)
- Digital resources - Examples of wave-based technologies - Video clips on wave applications |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
Your Name Comes Here