Home






SCHEME OF WORK
Physics
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 2
Refraction of Light
Introduction to Refraction and Basic Phenomena
By the end of the lesson, the learner should be able to:
Define refraction of light
-Explain why light bends when passing from one medium to another
-Identify examples of refraction in daily life
-Distinguish between optically dense and optically rare media
-Describe the behavior of light at interfaces
Q/A on light behavior students observe daily
-Demonstration: stick in water appearing bent
-Demonstration: coin in beaker appearing raised
-Discussion on swimming pool appearing shallow
-Observation of refraction using glass block and pins
-Drawing ray diagrams showing refraction
-Safety precautions when handling glass
Glass blocks
-Beakers
-Water
-Coins
-Sticks/pencils
-Pins
-White paper
-Ray box (if available)
-Charts showing refraction examples
KLB Secondary Physics Form 3, Pages 33-35
1 3
Refraction of Light
Laws of Refraction and Snell's Law
By the end of the lesson, the learner should be able to:
State the two laws of refraction
-Define refractive index and state its symbol
-Apply Snell's law: sin i/sin r = constant
-Understand that incident ray, refracted ray and normal lie in same plane
-Calculate refractive index from experimental data
Review refraction phenomena through Q/A
-Experiment: investigating refraction through glass block
-Measuring angles of incidence and refraction
-Plotting graph of sin i against sin r
-Derivation and application of Snell's law
-Worked examples calculating refractive index
-Discussion on significance of constant ratio
Glass blocks
-Pins
-Protractor
-Ruler
-White paper
-Graph paper
-Calculator
-Ray box
-Soft board
-Drawing pins
KLB Secondary Physics Form 3, Pages 35-39
1 4-5
Refraction of Light
Absolute and Relative Refractive Index
Real and Apparent Depth
By the end of the lesson, the learner should be able to:
Define absolute and relative refractive index
-Relate refractive index to speed of light in different media
-Apply the relationship n = c/v
-Calculate relative refractive index between two media
-Solve problems involving refractive indices
Explain why objects under water appear nearer than actual position
-Define real depth, apparent depth and vertical displacement
-Derive the relationship n = real depth/apparent depth
-Calculate apparent depth and vertical displacement
-Apply concepts to practical situations
Q/A review on Snell's law and calculations
-Discussion on light speed in different media
-Derivation of n = c/v relationship
-Explanation of absolute vs relative refractive index
-Worked examples with multiple media
-Problem-solving session with real materials
-Group work on refractive index calculations
Review refractive index through Q/A
-Demonstration: coin at bottom of beaker appears raised
-Experiment: measuring real and apparent depth
-Derivation of n = real depth/apparent depth
-Worked examples on swimming pools, tanks
-Practical: determining apparent depth using travelling microscope method
-Discussion on viewing angle effects
Calculator
-Charts showing refractive indices
-Worked examples
-Reference tables
-Graph paper
-Different transparent materials
-Speed of light reference chart
Beakers
-Water
-Coins
-Rulers
-Pins
-Travelling microscope (if available)
-Glass blocks
-Colored chalk dust
-Calculator
-Measuring cylinders
KLB Secondary Physics Form 3, Pages 39-43
KLB Secondary Physics Form 3, Pages 44-48
2 1
Refraction of Light
Experimental Determination of Refractive Index
By the end of the lesson, the learner should be able to:
Describe methods to determine refractive index experimentally
-Use real and apparent depth method
-Apply pin method for refractive index determination
-Use no-parallax method
-Calculate refractive index from experimental data
-Discuss sources of error and precautions
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins
-Experiment 2: Glass block method using pins
-Experiment 3: No-parallax method with water
-Data collection and analysis
-Plotting graphs where applicable
-Discussion on experimental errors and improvements
Glass blocks
-Pins
-Cork holders
-Beakers
-Water
-Rulers
-White paper
-Clamp and stand
-Graph paper
-Calculator
-Measuring tape
KLB Secondary Physics Form 3, Pages 48-51
2 2
Refraction of Light
Experimental Determination of Refractive Index
By the end of the lesson, the learner should be able to:
Describe methods to determine refractive index experimentally
-Use real and apparent depth method
-Apply pin method for refractive index determination
-Use no-parallax method
-Calculate refractive index from experimental data
-Discuss sources of error and precautions
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins
-Experiment 2: Glass block method using pins
-Experiment 3: No-parallax method with water
-Data collection and analysis
-Plotting graphs where applicable
-Discussion on experimental errors and improvements
Glass blocks
-Pins
-Cork holders
-Beakers
-Water
-Rulers
-White paper
-Clamp and stand
-Graph paper
-Calculator
-Measuring tape
KLB Secondary Physics Form 3, Pages 48-51
2 3
Refraction of Light
Critical Angle and Total Internal Reflection
By the end of the lesson, the learner should be able to:
Define critical angle
-State conditions for total internal reflection
-Derive relationship between critical angle and refractive index
-Calculate critical angle for different materials
-Explain total internal reflection using ray diagrams
Review experimental methods through Q/A
-Demonstration: increasing angle of incidence in glass-air interface
-Observation of critical angle and total internal reflection
-Derivation of sin c = 1/n relationship
-Worked examples calculating critical angles
-Investigation using semi-circular glass block
-Discussion on applications of total internal reflection
Semi-circular glass block
-Ray box
-White paper
-Protractor
-Pins
-Calculator
-Charts showing TIR
-Water
-Different transparent blocks
KLB Secondary Physics Form 3, Pages 51-55
2 4-5
Refraction of Light
Applications of Total Internal Reflection - Optical Devices
Mirage and Atmospheric Refraction
By the end of the lesson, the learner should be able to:
Explain working of periscope using total internal reflection
-Describe use of prisms in optical instruments
-Understand principle of optical fibers
-Explain advantages of prisms over mirrors
-Analyze light paths in prism binoculars and pentaprism
Explain formation of mirage using refraction principles
-Describe atmospheric refraction effects
-Understand continuous refraction in varying density media
-Explain why sun appears above horizon after sunset
-Discuss polar mirages and their formation
Q/A review on critical angle and TIR
-Demonstration: 45° prisms turning light through 90° and 180°
-Construction of simple periscope model
-Explanation of optical fiber principle
-Discussion on prism binoculars and pentaprism
-Comparison of prisms vs mirrors advantages
-Practical: observing TIR in water-filled apparatus
Review TIR applications through Q/A
-Demonstration of refraction in liquids of different densities
-Explanation of hot air effects on light path
-Discussion on desert mirages and road mirages
-Atmospheric refraction effects on sun position
-Analysis of continuous refraction in varying media
-Drawing ray diagrams for mirage formation
45° prisms
-Periscope model
-Optical fiber samples
-Mirrors for comparison
-Ray box
-Water
-Transparent containers
-Charts showing optical instruments
-Binoculars (if available)
Liquids of different densities
-Transparent containers
-Heat source (safe)
-Charts showing mirage formation
-Diagrams of atmospheric refraction
-Pictures of mirages
-Ray diagrams
KLB Secondary Physics Form 3, Pages 55-58
KLB Secondary Physics Form 3, Pages 55-56
3 1
Refraction of Light
Dispersion of White Light
By the end of the lesson, the learner should be able to:
Define dispersion of white light
-Explain why white light splits into colors
-Identify colors of visible spectrum in order
-Understand that different colors have different refractive indices
-Describe formation of rainbow
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism
-Observation of spectrum formation
-Discussion on why different colors bend differently
-Explanation of rainbow formation
-Identification of ROYGBIV sequence
-Investigation of spectrum using CD/DVD
Triangular glass prism
-White light source
-Screen
-Ray box
-CD/DVD
-White paper
-Ruler
-Charts showing spectrum
-Pictures of rainbows
KLB Secondary Physics Form 3, Pages 58-60
3 2
Refraction of Light
Dispersion of White Light
By the end of the lesson, the learner should be able to:
Define dispersion of white light
-Explain why white light splits into colors
-Identify colors of visible spectrum in order
-Understand that different colors have different refractive indices
-Describe formation of rainbow
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism
-Observation of spectrum formation
-Discussion on why different colors bend differently
-Explanation of rainbow formation
-Identification of ROYGBIV sequence
-Investigation of spectrum using CD/DVD
Triangular glass prism
-White light source
-Screen
-Ray box
-CD/DVD
-White paper
-Ruler
-Charts showing spectrum
-Pictures of rainbows
KLB Secondary Physics Form 3, Pages 58-60
3 3
Refraction of Light
Recombination of Spectrum and Problem Solving
By the end of the lesson, the learner should be able to:
Demonstrate recombination of dispersed light
-Explain Newton's disc experiment
-Use concave mirror to recombine spectrum
-Solve complex problems involving refraction
-Apply all refraction concepts to examination-type questions
Review dispersion concepts through Q/A
-Experiment: recombining spectrum using second prism
-Demonstration of Newton's disc
-Using concave mirror to focus spectrum
-Comprehensive problem-solving session covering all topics
-Practice with past examination questions
-Review and consolidation of entire unit
Second triangular prism
-Concave mirror
-Newton's disc
-Motor (for spinning disc)
-Calculator
-Past exam papers
-Comprehensive problem sets
-Review charts
-All previous apparatus for revision
KLB Secondary Physics Form 3, Pages 58-60
3 4-5
Newton's Laws of Motion
Newton's First Law and Inertia
Momentum and its Applications
By the end of the lesson, the learner should be able to:
State Newton's first law of motion
-Define inertia and relate it to mass
-Explain the concept of balanced and unbalanced forces
-Give examples of Newton's first law in daily life
-Understand the need for seat belts and safety devices
Define momentum and state its SI unit
-Calculate momentum using p = mv
-Identify momentum as a vector quantity
-Solve problems involving momentum calculations
-Compare momentum of different objects
Q/A review on forces from previous studies
-Demonstration: cardboard and coin experiment
-Demonstration: hitting bottom coin from stack
-Discussion on inertia and its relationship to mass
-Explanation of seat belts and safety devices in vehicles
-Analysis of forces acting on aircraft in flight
Review Newton's first law through Q/A
-Introduction to momentum concept with examples
-Demonstration: comparing stopping distances of vehicles
-Worked examples on momentum calculations
-Problem-solving session with various scenarios
-Discussion on factors affecting momentum
Cardboard
-Glass tumbler
-Coins
-Charts showing aircraft forces
-Pictures of safety devices
-Demonstration materials
-Balance
Calculator
-Toy cars of different masses
-Stopwatch
-Measuring tape
-Worked examples charts
-Problem worksheets
KLB Secondary Physics Form 3, Pages 65-67
KLB Secondary Physics Form 3, Pages 67-68
4 1
Newton's Laws of Motion
Newton's Second Law of Motion
By the end of the lesson, the learner should be able to:
State Newton's second law of motion
-Derive the relationship F = ma
-Define the Newton as unit of force
-Understand rate of change of momentum
-Apply F = ma to solve problems
Q/A on momentum concepts
-Derivation of F = ma from Newton's second law
-Definition of the Newton using F = ma
-Demonstration using ticker-timer and trolley
-Worked examples applying F = ma
-Problem-solving session with force calculations
Ticker-timer
-Trolley
-Runway
-Elastic cords
-Masses
-Calculator
-Force diagrams
-Worked examples
KLB Secondary Physics Form 3, Pages 68-74
4 2
Newton's Laws of Motion
Newton's Second Law of Motion
By the end of the lesson, the learner should be able to:
State Newton's second law of motion
-Derive the relationship F = ma
-Define the Newton as unit of force
-Understand rate of change of momentum
-Apply F = ma to solve problems
Q/A on momentum concepts
-Derivation of F = ma from Newton's second law
-Definition of the Newton using F = ma
-Demonstration using ticker-timer and trolley
-Worked examples applying F = ma
-Problem-solving session with force calculations
Ticker-timer
-Trolley
-Runway
-Elastic cords
-Masses
-Calculator
-Force diagrams
-Worked examples
KLB Secondary Physics Form 3, Pages 68-74
4 3
Newton's Laws of Motion
Experimental Verification of Newton's Second Law
By the end of the lesson, the learner should be able to:
Investigate relationship between force and acceleration
-Investigate relationship between mass and acceleration
-Verify F = ma experimentally
-Analyze ticker-tape results
-Draw conclusions from experimental data
Review F = ma through Q/A
-Experiment: Force vs acceleration (constant mass)
-Experiment: Mass vs acceleration (constant force)
-Analysis of ticker-tape patterns
-Data collection and graph plotting
-Discussion on experimental errors and improvements
Ticker-timer
-Trolley
-Ticker tape
-Elastic cords
-Various masses
-Scissors
-Graph paper
-Rulers
-Calculator
KLB Secondary Physics Form 3, Pages 69-71
4 4-5
Newton's Laws of Motion
Impulse and Change in Momentum
Newton's Third Law of Motion
By the end of the lesson, the learner should be able to:
Define impulse and state its units
-Understand impulse-momentum theorem
-Calculate impulse using Ft = Δp
-Analyze force-time graphs
-Apply impulse concept to real situations
State Newton's third law of motion
-Understand action and reaction pairs
-Explain that forces occur in pairs
-Apply third law to various situations
-Analyze motion in different scenarios
Q/A review on Newton's second law
-Introduction to impulse concept
-Derivation of impulse-momentum theorem
-Analysis of force-time graphs and area calculation
-Worked examples on impulse calculations
-Discussion on applications: car safety, sports
Review impulse concepts through Q/A
-Demonstration: walking and floor interaction
-Demonstration: jumping from boat scenario
-Discussion on action-reaction pairs
-Examples from daily life: walking, swimming, rocket propulsion
-Problem-solving involving third law
Graph paper
-Force-time graph examples
-Calculator
-Charts showing car safety features
-Sports equipment examples
-Worked examples
Books for pressure demonstration
-Spring balances
-Trolleys
-String
-Charts showing action-reaction examples
-Pictures of rockets and jets
KLB Secondary Physics Form 3, Pages 71-74
KLB Secondary Physics Form 3, Pages 75-80
5 1
Newton's Laws of Motion
Applications of Newton's Laws - Lifts and Apparent Weight
By the end of the lesson, the learner should be able to:
Analyze forces in accelerating lifts
-Calculate apparent weight in different situations
-Understand weightlessness concept
-Apply Newton's laws to lift problems
-Solve problems involving vertical motion
Q/A on Newton's third law
-Analysis of forces in lift moving upward with acceleration
-Analysis of forces in lift moving downward with acceleration
-Calculation of apparent weight in different scenarios
-Discussion on weightlessness in spacecraft
-Problem-solving session on lift problems
Spring balance
-Mass
-Lift diagrams
-Calculator
-Free-body diagram charts
-Worked examples
-Problem worksheets
KLB Secondary Physics Form 3, Pages 76-78
5 2
Newton's Laws of Motion
Applications of Newton's Laws - Lifts and Apparent Weight
By the end of the lesson, the learner should be able to:
Analyze forces in accelerating lifts
-Calculate apparent weight in different situations
-Understand weightlessness concept
-Apply Newton's laws to lift problems
-Solve problems involving vertical motion
Q/A on Newton's third law
-Analysis of forces in lift moving upward with acceleration
-Analysis of forces in lift moving downward with acceleration
-Calculation of apparent weight in different scenarios
-Discussion on weightlessness in spacecraft
-Problem-solving session on lift problems
Spring balance
-Mass
-Lift diagrams
-Calculator
-Free-body diagram charts
-Worked examples
-Problem worksheets
KLB Secondary Physics Form 3, Pages 76-78
5 3
Newton's Laws of Motion
Conservation of Linear Momentum
By the end of the lesson, the learner should be able to:
State the law of conservation of momentum
-Apply conservation of momentum to collisions
-Distinguish between elastic and inelastic collisions
-Solve collision problems
-Understand momentum in explosions
Review lift problems through Q/A
-Statement and explanation of conservation of momentum
-Demonstration: colliding trolleys or balls
-Analysis of elastic and inelastic collisions
-Worked examples on collision problems
-Discussion on explosions and momentum conservation
Trolleys
-Plasticine
-Marbles
-Spring balance
-Measuring tape
-Stopwatch
-Calculator
-Collision demonstration apparatus
KLB Secondary Physics Form 3, Pages 80-86
5 4-5
Newton's Laws of Motion
Applications of Momentum Conservation - Rockets and Jets
Friction - Types and Laws
By the end of the lesson, the learner should be able to:
Explain rocket and jet propulsion
-Apply momentum conservation to propulsion systems
-Understand recoil velocity calculations
-Analyze garden sprinkler operation
-Solve recoil problems
Define friction and explain its molecular basis
-Distinguish between static and kinetic friction
-State and apply laws of friction
-Understand advantages and disadvantages of friction
-Identify methods of reducing friction
Q/A review on momentum conservation
-Explanation of rocket propulsion principle
-Analysis of jet engine operation
-Calculation of recoil velocities
-Demonstration: balloon rocket or garden sprinkler
-Problem-solving on recoil scenarios
Review momentum applications through Q/A
-Demonstration: block on table with increasing force
-Explanation of molecular basis of friction
-Discussion on types of friction: static, kinetic, rolling
-Investigation of factors affecting friction
-Examples of friction in daily life and technology
Balloons
-String
-Straws
-Garden sprinkler (if available)
-Charts showing rocket/jet engines
-Calculator
-Worked examples
Wooden blocks
-Different surfaces
-Spring balance
-Weights
-Lubricants
-Sandpaper
-Charts showing friction applications
-Ball bearings
KLB Secondary Physics Form 3, Pages 86-87
KLB Secondary Physics Form 3, Pages 87-90
6 1
Newton's Laws of Motion
Viscosity and Terminal Velocity
By the end of the lesson, the learner should be able to:
Define viscosity and explain its effects
-Understand motion of objects through fluids
-Explain terminal velocity concept
-Analyze forces on falling objects in fluids
-Investigate factors affecting terminal velocity
Q/A on friction concepts
-Demonstration: steel ball falling through different liquids
-Explanation of viscous drag and terminal velocity
-Analysis of forces: weight, upthrust, and viscous drag
-Investigation of terminal velocity using glycerine
-Discussion on applications: parachutes, rain drops
Tall measuring cylinder
-Glycerine
-Steel ball bearings
-Water
-Stopwatch
-Rubber bands
-Ruler
-Different viscous liquids
KLB Secondary Physics Form 3, Pages 90-93
6 2
Newton's Laws of Motion
Viscosity and Terminal Velocity
By the end of the lesson, the learner should be able to:
Define viscosity and explain its effects
-Understand motion of objects through fluids
-Explain terminal velocity concept
-Analyze forces on falling objects in fluids
-Investigate factors affecting terminal velocity
Q/A on friction concepts
-Demonstration: steel ball falling through different liquids
-Explanation of viscous drag and terminal velocity
-Analysis of forces: weight, upthrust, and viscous drag
-Investigation of terminal velocity using glycerine
-Discussion on applications: parachutes, rain drops
Tall measuring cylinder
-Glycerine
-Steel ball bearings
-Water
-Stopwatch
-Rubber bands
-Ruler
-Different viscous liquids
KLB Secondary Physics Form 3, Pages 90-93
6 3
Work, Energy, Power and Machines
Gears and Hydraulic Systems
By the end of the lesson, the learner should be able to:
Understand gear systems and their operation
-Calculate V.R. for gear systems
-Explain hydraulic lift principle
-Apply Pascal's principle to hydraulic systems
-Calculate M.A. and V.R. for hydraulic systems
Review inclined planes through Q/A
-Demonstration: gear system operation
-Calculation of gear ratios and V.R.
-Explanation of hydraulic lift principle
-Demonstration: Pascal's principle using syringes
-Calculation of hydraulic system parameters
Gear wheels
-Bicycle for gear demonstration
-Syringes of different sizes
-Water
-Tubes
-Calculator
-Hydraulic system diagrams
-Gear ratio charts
KLB Secondary Physics Form 3, Pages 116-119
6 4-5
Work, Energy, Power and Machines
Current Electricity (II)
Efficiency of Machines
Electric Current and Measurement
By the end of the lesson, the learner should be able to:
Understand factors affecting machine efficiency
-Calculate efficiency using different methods
-Investigate efficiency of various machines
-Understand energy losses in machines
-Discuss methods to improve efficiency
Define electric current and state its SI unit
-Understand conventional current flow
-Use ammeters correctly to measure current
-Read ammeter scales accurately
-Understand current as rate of flow of charge
Q/A on gears and hydraulic systems
-Investigation: efficiency of pulley system
-Discussion on factors causing energy losses
-Measurement of input and output work
-Calculation of efficiency for different machines
-Discussion on improving machine efficiency
Q/A review on basic electricity from Form 2
-Definition of electric current and conventional flow
-Demonstration: proper ammeter connection in series
-Practice reading different ammeter scales
-Discussion on digital vs analogue meters
-Safety precautions when using electrical equipment
Various machines for testing
-Spring balances
-Measuring tape
-Stopwatch
-Calculator
-Efficiency measurement setup
-Lubricants for demonstration
Ammeters (analogue and digital)
-Dry cells
-Connecting wires
-Bulbs
-Switches
-Ammeter scale charts
-Safety equipment
KLB Secondary Physics Form 3, Pages 120-123
KLB Secondary Physics Form 3, Pages 126-130
7 1
Current Electricity (II)
Series and Parallel Circuits - Current Distribution
By the end of the lesson, the learner should be able to:
Investigate current in series circuits
-Investigate current in parallel circuits
-Apply Kirchhoff's current law
-Understand current division in parallel circuits
-Solve problems involving current distribution
Review ammeter usage through Q/A
-Experiment: measuring current in series circuit
-Experiment: measuring current in parallel circuit
-Analysis of current readings and patterns
-Statement of Kirchhoff's current law
-Problem-solving on current distribution
Multiple ammeters
-Bulbs
-Connecting wires
-Dry cells
-Switches
-Circuit boards
-Calculator
-Current distribution worksheets
KLB Secondary Physics Form 3, Pages 130-133
7 2
Current Electricity (II)
Series and Parallel Circuits - Current Distribution
By the end of the lesson, the learner should be able to:
Investigate current in series circuits
-Investigate current in parallel circuits
-Apply Kirchhoff's current law
-Understand current division in parallel circuits
-Solve problems involving current distribution
Review ammeter usage through Q/A
-Experiment: measuring current in series circuit
-Experiment: measuring current in parallel circuit
-Analysis of current readings and patterns
-Statement of Kirchhoff's current law
-Problem-solving on current distribution
Multiple ammeters
-Bulbs
-Connecting wires
-Dry cells
-Switches
-Circuit boards
-Calculator
-Current distribution worksheets
KLB Secondary Physics Form 3, Pages 130-133
7 3
Current Electricity (II)
Potential Difference and Voltage Measurement
By the end of the lesson, the learner should be able to:
Define potential difference in terms of work done
-State the SI unit of potential difference
-Use voltmeters correctly to measure voltage
-Understand voltage measurement across components
-Read voltmeter scales accurately
Q/A on current distribution
-Definition of potential difference and work done per unit charge
-Demonstration: proper voltmeter connection in parallel
-Practice measuring voltage across different components
-Comparison of voltmeter and ammeter connections
-Safety considerations in voltage measurement
Voltmeters (analogue and digital)
-Dry cells
-Resistors
-Bulbs
-Connecting wires
-Switches
-Voltmeter scale charts
-Work and charge demonstration materials
KLB Secondary Physics Form 3, Pages 126-129
7 4-5
Current Electricity (II)
Series and Parallel Circuits - Voltage Distribution
By the end of the lesson, the learner should be able to:
Investigate voltage in series circuits
-Investigate voltage in parallel circuits
-Apply Kirchhoff's voltage law
-Understand voltage division in series circuits
-Solve problems involving voltage distribution
Review voltage measurement through Q/A
-Experiment: measuring voltage across series components
-Experiment: measuring voltage across parallel components
-Analysis of voltage readings and patterns
-Statement of Kirchhoff's voltage law
-Problem-solving on voltage distribution
Multiple voltmeters
-Various resistors
-Connecting wires
-Dry cells
-Switches
-Circuit boards
-Calculator
-Voltage distribution worksheets
KLB Secondary Physics Form 3, Pages 130-133
8 1
Current Electricity (II)
Ohm's Law - Investigation and Verification
By the end of the lesson, the learner should be able to:
State Ohm's law
-Investigate relationship between voltage and current
-Plot V-I graphs for ohmic conductors
-Verify Ohm's law experimentally
-Understand conditions for Ohm's law validity
Q/A on voltage distribution
-Experiment: varying voltage and measuring current through resistor
-Data collection and table completion
-Plotting V-I graph and analyzing slope
-Statement and verification of Ohm's law
-Discussion on temperature and other conditions
Rheostat
-Ammeter
-Voltmeter
-Resistor coils
-Connecting wires
-Dry cells
-Graph paper
-Calculator
-Ruler
KLB Secondary Physics Form 3, Pages 131-135
8

mid term exam

9

Mid term break

10 1
Current Electricity (II)
Electrical Resistance and Ohm's Law Applications
By the end of the lesson, the learner should be able to:
Define electrical resistance and its SI unit
-Apply Ohm's law to calculate V, I, and R
-Understand the relationship R = V/I
-Solve problems using Ohm's law
-Convert between different units of resistance
Review Ohm's law investigation through Q/A
-Definition of electrical resistance as V/I ratio
-Worked examples applying Ohm's law triangle
-Unit conversions: Ω, kΩ, MΩ
-Problem-solving session on Ohm's law calculations
-Discussion on factors affecting resistance
Calculator
-Ohm's law triangle charts
-Resistor color code charts
-Various resistors
-Multimeter
-Problem worksheets
-Unit conversion charts
KLB Secondary Physics Form 3, Pages 131-135
10 2
Current Electricity (II)
Ohmic and Non-Ohmic Conductors
By the end of the lesson, the learner should be able to:
Distinguish between ohmic and non-ohmic conductors
-Investigate V-I characteristics of different materials
-Understand why some materials don't obey Ohm's law
-Analyze V-I graphs for various conductors
-Identify practical applications of non-ohmic conductors
Q/A on Ohm's law applications
-Experiment: V-I characteristics of filament bulb
-Experiment: V-I characteristics of diode
-Comparison of different V-I graph shapes
-Discussion on temperature effects on resistance
-Applications of non-ohmic conductors
Filament bulbs
-Diodes
-Thermistors
-LDR
-Ammeter
-Voltmeter
-Rheostat
-Graph paper
-Various conductors for testing
KLB Secondary Physics Form 3, Pages 134-135
10 3
Current Electricity (II)
Types of Resistors and Their Applications
By the end of the lesson, the learner should be able to:
Identify different types of resistors
-Understand fixed and variable resistors
-Read resistor color codes
-Understand applications of special resistors
-Use rheostats and potentiometers
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable
-Practice reading resistor color codes
-Demonstration: rheostat and potentiometer operation
-Discussion on thermistors and LDR applications
-Practical applications in circuits
Various resistor types
-Color code charts
-Rheostat
-Potentiometer
-Thermistor
-LDR
-Multimeter
-Circuit boards
-Application examples
KLB Secondary Physics Form 3, Pages 135-140
10 4-5
Current Electricity (II)
Types of Resistors and Their Applications
Measurement of Resistance - Voltmeter-Ammeter Method
By the end of the lesson, the learner should be able to:
Identify different types of resistors
-Understand fixed and variable resistors
-Read resistor color codes
-Understand applications of special resistors
-Use rheostats and potentiometers
Describe voltmeter-ammeter method
-Set up circuits for resistance measurement
-Calculate resistance from V and I readings
-Understand limitations of the method
-Analyze experimental errors
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable
-Practice reading resistor color codes
-Demonstration: rheostat and potentiometer operation
-Discussion on thermistors and LDR applications
-Practical applications in circuits
Q/A on resistor types
-Setup of voltmeter-ammeter circuit
-Measurement of voltage and current for unknown resistor
-Calculation of resistance using R = V/I
-Discussion on measurement errors and accuracy
-Comparison with multimeter readings
Various resistor types
-Color code charts
-Rheostat
-Potentiometer
-Thermistor
-LDR
-Multimeter
-Circuit boards
-Application examples
Unknown resistors
-Voltmeter
-Ammeter
-Rheostat
-Connecting wires
-Dry cells
-Switches
-Calculator
-Multimeter for comparison
KLB Secondary Physics Form 3, Pages 135-140
KLB Secondary Physics Form 3, Pages 140-142
11 1
Current Electricity (II)
Wheatstone Bridge Method
By the end of the lesson, the learner should be able to:
Understand the principle of Wheatstone bridge
-Set up Wheatstone bridge circuit
-Balance the bridge for resistance measurement
-Calculate unknown resistance using bridge equation
-Appreciate accuracy of Wheatstone bridge method
Review voltmeter-ammeter method through Q/A
-Introduction to Wheatstone bridge principle
-Demonstration of bridge balance condition
-Setup and operation of Wheatstone bridge
-Calculation using R₁/R₂ = R₃/R₄
-Comparison of accuracy with other methods
Wheatstone bridge apparatus
-Galvanometer
-Known resistors
-Unknown resistors
-Connecting wires
-Battery
-Calculator
-Bridge equation charts
KLB Secondary Physics Form 3, Pages 142-144
11 2
Current Electricity (II)
Resistors in Series - Theory and Calculations
By the end of the lesson, the learner should be able to:
Derive formula for resistors in series
-Calculate total resistance for series combination
-Understand current and voltage in series circuits
-Solve problems involving series resistors
-Apply series resistance in circuit analysis
Q/A on resistance measurement methods
-Derivation of Rs = R₁ + R₂ + R₃...
-Demonstration: measuring total resistance of series combination
-Analysis of current (same) and voltage (divided) in series
-Worked examples on series resistance calculations
-Problem-solving session
Resistors of known values
-Multimeter
-Connecting wires
-Circuit boards
-Calculator
-Series circuit diagrams
-Problem worksheets
KLB Secondary Physics Form 3, Pages 144-147
11 3
Current Electricity (II)
Resistors in Parallel - Theory and Calculations
By the end of the lesson, the learner should be able to:
Derive formula for resistors in parallel
-Calculate total resistance for parallel combination
-Understand current and voltage in parallel circuits
-Solve problems involving parallel resistors
-Apply parallel resistance in circuit analysis
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃...
-Demonstration: measuring total resistance of parallel combination
-Analysis of voltage (same) and current (divided) in parallel
-Worked examples on parallel resistance calculations
-Problem-solving session
Resistors of known values
-Multimeter
-Connecting wires
-Circuit boards
-Calculator
-Parallel circuit diagrams
-Problem worksheets
KLB Secondary Physics Form 3, Pages 147-150
11 4-5
Current Electricity (II)
Resistors in Parallel - Theory and Calculations
Mixed Circuits - Series-Parallel Combinations
By the end of the lesson, the learner should be able to:
Derive formula for resistors in parallel
-Calculate total resistance for parallel combination
-Understand current and voltage in parallel circuits
-Solve problems involving parallel resistors
-Apply parallel resistance in circuit analysis
Analyze circuits with series-parallel combinations
-Apply reduction techniques to complex circuits
-Calculate total resistance of mixed circuits
-Determine current and voltage in different branches
-Solve complex circuit problems
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃...
-Demonstration: measuring total resistance of parallel combination
-Analysis of voltage (same) and current (divided) in parallel
-Worked examples on parallel resistance calculations
-Problem-solving session
Q/A on parallel resistance
-Introduction to mixed circuit analysis techniques
-Step-by-step reduction of complex circuits
-Worked examples on series-parallel combinations
-Problem-solving on mixed circuits
-Discussion on circuit analysis strategies
Resistors of known values
-Multimeter
-Connecting wires
-Circuit boards
-Calculator
-Parallel circuit diagrams
-Problem worksheets
Various resistors
-Circuit boards
-Connecting wires
-Multimeter
-Calculator
-Complex circuit diagrams
-Step-by-step analysis charts
KLB Secondary Physics Form 3, Pages 147-150
KLB Secondary Physics Form 3, Pages 150-153
12 1
Current Electricity (II)
Electromotive Force (EMF) and Terminal Voltage
By the end of the lesson, the learner should be able to:
Define electromotive force (EMF)
-Distinguish between EMF and terminal voltage
-Understand the concept of lost voltage
-Relate EMF to work done by the cell
-Measure EMF using high resistance voltmeter
Review mixed circuits through Q/A
-Definition of EMF as work done per unit charge
-Demonstration: measuring EMF with open circuit
-Comparison of EMF and terminal voltage under load
-Discussion on energy conversion in cells
-Measurement techniques for EMF
High resistance voltmeter
-Various cells
-Switches
-Resistors
-Connecting wires
-EMF measurement setup
-Energy conversion charts
KLB Secondary Physics Form 3, Pages 150-152
12 2
Current Electricity (II)
Internal Resistance of Cells
By the end of the lesson, the learner should be able to:
Define internal resistance
-Understand the relationship E = V + Ir
-Calculate internal resistance experimentally
-Understand factors affecting internal resistance
-Apply internal resistance in circuit calculations
Q/A on EMF concepts
-Introduction to internal resistance concept
-Derivation of E = V + Ir relationship
-Experiment: measuring internal resistance using different loads
-Plotting E vs R graph to find internal resistance
-Discussion on factors affecting internal resistance
Various cells
-Resistors of different values
-Voltmeter
-Ammeter
-Connecting wires
-Graph paper
-Calculator
-Internal resistance apparatus
KLB Secondary Physics Form 3, Pages 150-153
12 3
Current Electricity (II)
Cells in Series and Parallel
By the end of the lesson, the learner should be able to:
Analyze cells connected in series
-Analyze cells connected in parallel
-Calculate total EMF and internal resistance
-Understand advantages of different connections
-Solve problems involving cell combinations
Review internal resistance through Q/A
-Analysis of identical cells in series connection
-Analysis of identical cells in parallel connection
-Calculation of equivalent EMF and internal resistance
-Discussion on practical applications and advantages
-Problem-solving on cell combinations
Multiple identical cells
-Connecting wires
-Voltmeter
-Ammeter
-Resistors
-Calculator
-Cell combination diagrams
-Problem worksheets
KLB Secondary Physics Form 3, Pages 152-153
12 4-5
Current Electricity (II)
Cells in Series and Parallel
Advanced Circuit Analysis and Problem Solving
By the end of the lesson, the learner should be able to:
Analyze cells connected in series
-Analyze cells connected in parallel
-Calculate total EMF and internal resistance
-Understand advantages of different connections
-Solve problems involving cell combinations
Apply Kirchhoff's laws to complex circuits
-Solve circuits with multiple sources
-Analyze circuits with internal resistance
-Use systematic approaches to circuit problems
-Integrate all electricity concepts
Review internal resistance through Q/A
-Analysis of identical cells in series connection
-Analysis of identical cells in parallel connection
-Calculation of equivalent EMF and internal resistance
-Discussion on practical applications and advantages
-Problem-solving on cell combinations
Q/A on cell combinations
-Application of Kirchhoff's current and voltage laws
-Systematic approach to complex circuit analysis
-Worked examples with multiple EMF sources
-Problem-solving session covering all electricity topics
-Discussion on practical circuit applications
Multiple identical cells
-Connecting wires
-Voltmeter
-Ammeter
-Resistors
-Calculator
-Cell combination diagrams
-Problem worksheets
Complex circuit examples
-Calculator
-Circuit analysis worksheets
-Multiple EMF sources
-Various resistors
-Comprehensive problem sets
-Kirchhoff's law charts
KLB Secondary Physics Form 3, Pages 152-153
KLB Secondary Physics Form 3, Pages 126-153
13-14

End term exam


Your Name Comes Here


Download

Feedback