If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 2 |
Refraction of Light
|
Introduction to Refraction and Basic Phenomena
|
By the end of the
lesson, the learner
should be able to:
Define refraction of light -Explain why light bends when passing from one medium to another -Identify examples of refraction in daily life -Distinguish between optically dense and optically rare media -Describe the behavior of light at interfaces |
Q/A on light behavior students observe daily
-Demonstration: stick in water appearing bent -Demonstration: coin in beaker appearing raised -Discussion on swimming pool appearing shallow -Observation of refraction using glass block and pins -Drawing ray diagrams showing refraction -Safety precautions when handling glass |
Glass blocks
-Beakers -Water -Coins -Sticks/pencils -Pins -White paper -Ray box (if available) -Charts showing refraction examples |
KLB Secondary Physics Form 3, Pages 33-35
|
|
1 | 3 |
Refraction of Light
|
Laws of Refraction and Snell's Law
|
By the end of the
lesson, the learner
should be able to:
State the two laws of refraction -Define refractive index and state its symbol -Apply Snell's law: sin i/sin r = constant -Understand that incident ray, refracted ray and normal lie in same plane -Calculate refractive index from experimental data |
Review refraction phenomena through Q/A
-Experiment: investigating refraction through glass block -Measuring angles of incidence and refraction -Plotting graph of sin i against sin r -Derivation and application of Snell's law -Worked examples calculating refractive index -Discussion on significance of constant ratio |
Glass blocks
-Pins -Protractor -Ruler -White paper -Graph paper -Calculator -Ray box -Soft board -Drawing pins |
KLB Secondary Physics Form 3, Pages 35-39
|
|
1 | 4-5 |
Refraction of Light
|
Absolute and Relative Refractive Index
Real and Apparent Depth |
By the end of the
lesson, the learner
should be able to:
Define absolute and relative refractive index -Relate refractive index to speed of light in different media -Apply the relationship n = c/v -Calculate relative refractive index between two media -Solve problems involving refractive indices Explain why objects under water appear nearer than actual position -Define real depth, apparent depth and vertical displacement -Derive the relationship n = real depth/apparent depth -Calculate apparent depth and vertical displacement -Apply concepts to practical situations |
Q/A review on Snell's law and calculations
-Discussion on light speed in different media -Derivation of n = c/v relationship -Explanation of absolute vs relative refractive index -Worked examples with multiple media -Problem-solving session with real materials -Group work on refractive index calculations Review refractive index through Q/A -Demonstration: coin at bottom of beaker appears raised -Experiment: measuring real and apparent depth -Derivation of n = real depth/apparent depth -Worked examples on swimming pools, tanks -Practical: determining apparent depth using travelling microscope method -Discussion on viewing angle effects |
Calculator
-Charts showing refractive indices -Worked examples -Reference tables -Graph paper -Different transparent materials -Speed of light reference chart Beakers -Water -Coins -Rulers -Pins -Travelling microscope (if available) -Glass blocks -Colored chalk dust -Calculator -Measuring cylinders |
KLB Secondary Physics Form 3, Pages 39-43
KLB Secondary Physics Form 3, Pages 44-48 |
|
2 | 1 |
Refraction of Light
|
Experimental Determination of Refractive Index
|
By the end of the
lesson, the learner
should be able to:
Describe methods to determine refractive index experimentally -Use real and apparent depth method -Apply pin method for refractive index determination -Use no-parallax method -Calculate refractive index from experimental data -Discuss sources of error and precautions |
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins -Experiment 2: Glass block method using pins -Experiment 3: No-parallax method with water -Data collection and analysis -Plotting graphs where applicable -Discussion on experimental errors and improvements |
Glass blocks
-Pins -Cork holders -Beakers -Water -Rulers -White paper -Clamp and stand -Graph paper -Calculator -Measuring tape |
KLB Secondary Physics Form 3, Pages 48-51
|
|
2 | 2 |
Refraction of Light
|
Experimental Determination of Refractive Index
|
By the end of the
lesson, the learner
should be able to:
Describe methods to determine refractive index experimentally -Use real and apparent depth method -Apply pin method for refractive index determination -Use no-parallax method -Calculate refractive index from experimental data -Discuss sources of error and precautions |
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins -Experiment 2: Glass block method using pins -Experiment 3: No-parallax method with water -Data collection and analysis -Plotting graphs where applicable -Discussion on experimental errors and improvements |
Glass blocks
-Pins -Cork holders -Beakers -Water -Rulers -White paper -Clamp and stand -Graph paper -Calculator -Measuring tape |
KLB Secondary Physics Form 3, Pages 48-51
|
|
2 | 3 |
Refraction of Light
|
Critical Angle and Total Internal Reflection
|
By the end of the
lesson, the learner
should be able to:
Define critical angle -State conditions for total internal reflection -Derive relationship between critical angle and refractive index -Calculate critical angle for different materials -Explain total internal reflection using ray diagrams |
Review experimental methods through Q/A
-Demonstration: increasing angle of incidence in glass-air interface -Observation of critical angle and total internal reflection -Derivation of sin c = 1/n relationship -Worked examples calculating critical angles -Investigation using semi-circular glass block -Discussion on applications of total internal reflection |
Semi-circular glass block
-Ray box -White paper -Protractor -Pins -Calculator -Charts showing TIR -Water -Different transparent blocks |
KLB Secondary Physics Form 3, Pages 51-55
|
|
2 | 4-5 |
Refraction of Light
|
Applications of Total Internal Reflection - Optical Devices
Mirage and Atmospheric Refraction |
By the end of the
lesson, the learner
should be able to:
Explain working of periscope using total internal reflection -Describe use of prisms in optical instruments -Understand principle of optical fibers -Explain advantages of prisms over mirrors -Analyze light paths in prism binoculars and pentaprism Explain formation of mirage using refraction principles -Describe atmospheric refraction effects -Understand continuous refraction in varying density media -Explain why sun appears above horizon after sunset -Discuss polar mirages and their formation |
Q/A review on critical angle and TIR
-Demonstration: 45° prisms turning light through 90° and 180° -Construction of simple periscope model -Explanation of optical fiber principle -Discussion on prism binoculars and pentaprism -Comparison of prisms vs mirrors advantages -Practical: observing TIR in water-filled apparatus Review TIR applications through Q/A -Demonstration of refraction in liquids of different densities -Explanation of hot air effects on light path -Discussion on desert mirages and road mirages -Atmospheric refraction effects on sun position -Analysis of continuous refraction in varying media -Drawing ray diagrams for mirage formation |
45° prisms
-Periscope model -Optical fiber samples -Mirrors for comparison -Ray box -Water -Transparent containers -Charts showing optical instruments -Binoculars (if available) Liquids of different densities -Transparent containers -Heat source (safe) -Charts showing mirage formation -Diagrams of atmospheric refraction -Pictures of mirages -Ray diagrams |
KLB Secondary Physics Form 3, Pages 55-58
KLB Secondary Physics Form 3, Pages 55-56 |
|
3 | 1 |
Refraction of Light
|
Dispersion of White Light
|
By the end of the
lesson, the learner
should be able to:
Define dispersion of white light -Explain why white light splits into colors -Identify colors of visible spectrum in order -Understand that different colors have different refractive indices -Describe formation of rainbow |
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism -Observation of spectrum formation -Discussion on why different colors bend differently -Explanation of rainbow formation -Identification of ROYGBIV sequence -Investigation of spectrum using CD/DVD |
Triangular glass prism
-White light source -Screen -Ray box -CD/DVD -White paper -Ruler -Charts showing spectrum -Pictures of rainbows |
KLB Secondary Physics Form 3, Pages 58-60
|
|
3 | 2 |
Refraction of Light
|
Dispersion of White Light
|
By the end of the
lesson, the learner
should be able to:
Define dispersion of white light -Explain why white light splits into colors -Identify colors of visible spectrum in order -Understand that different colors have different refractive indices -Describe formation of rainbow |
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism -Observation of spectrum formation -Discussion on why different colors bend differently -Explanation of rainbow formation -Identification of ROYGBIV sequence -Investigation of spectrum using CD/DVD |
Triangular glass prism
-White light source -Screen -Ray box -CD/DVD -White paper -Ruler -Charts showing spectrum -Pictures of rainbows |
KLB Secondary Physics Form 3, Pages 58-60
|
|
3 | 3 |
Refraction of Light
|
Recombination of Spectrum and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Demonstrate recombination of dispersed light -Explain Newton's disc experiment -Use concave mirror to recombine spectrum -Solve complex problems involving refraction -Apply all refraction concepts to examination-type questions |
Review dispersion concepts through Q/A
-Experiment: recombining spectrum using second prism -Demonstration of Newton's disc -Using concave mirror to focus spectrum -Comprehensive problem-solving session covering all topics -Practice with past examination questions -Review and consolidation of entire unit |
Second triangular prism
-Concave mirror -Newton's disc -Motor (for spinning disc) -Calculator -Past exam papers -Comprehensive problem sets -Review charts -All previous apparatus for revision |
KLB Secondary Physics Form 3, Pages 58-60
|
|
3 | 4-5 |
Newton's Laws of Motion
|
Newton's First Law and Inertia
Momentum and its Applications |
By the end of the
lesson, the learner
should be able to:
State Newton's first law of motion -Define inertia and relate it to mass -Explain the concept of balanced and unbalanced forces -Give examples of Newton's first law in daily life -Understand the need for seat belts and safety devices Define momentum and state its SI unit -Calculate momentum using p = mv -Identify momentum as a vector quantity -Solve problems involving momentum calculations -Compare momentum of different objects |
Q/A review on forces from previous studies
-Demonstration: cardboard and coin experiment -Demonstration: hitting bottom coin from stack -Discussion on inertia and its relationship to mass -Explanation of seat belts and safety devices in vehicles -Analysis of forces acting on aircraft in flight Review Newton's first law through Q/A -Introduction to momentum concept with examples -Demonstration: comparing stopping distances of vehicles -Worked examples on momentum calculations -Problem-solving session with various scenarios -Discussion on factors affecting momentum |
Cardboard
-Glass tumbler -Coins -Charts showing aircraft forces -Pictures of safety devices -Demonstration materials -Balance Calculator -Toy cars of different masses -Stopwatch -Measuring tape -Worked examples charts -Problem worksheets |
KLB Secondary Physics Form 3, Pages 65-67
KLB Secondary Physics Form 3, Pages 67-68 |
|
4 | 1 |
Newton's Laws of Motion
|
Newton's Second Law of Motion
|
By the end of the
lesson, the learner
should be able to:
State Newton's second law of motion -Derive the relationship F = ma -Define the Newton as unit of force -Understand rate of change of momentum -Apply F = ma to solve problems |
Q/A on momentum concepts
-Derivation of F = ma from Newton's second law -Definition of the Newton using F = ma -Demonstration using ticker-timer and trolley -Worked examples applying F = ma -Problem-solving session with force calculations |
Ticker-timer
-Trolley -Runway -Elastic cords -Masses -Calculator -Force diagrams -Worked examples |
KLB Secondary Physics Form 3, Pages 68-74
|
|
4 | 2 |
Newton's Laws of Motion
|
Newton's Second Law of Motion
|
By the end of the
lesson, the learner
should be able to:
State Newton's second law of motion -Derive the relationship F = ma -Define the Newton as unit of force -Understand rate of change of momentum -Apply F = ma to solve problems |
Q/A on momentum concepts
-Derivation of F = ma from Newton's second law -Definition of the Newton using F = ma -Demonstration using ticker-timer and trolley -Worked examples applying F = ma -Problem-solving session with force calculations |
Ticker-timer
-Trolley -Runway -Elastic cords -Masses -Calculator -Force diagrams -Worked examples |
KLB Secondary Physics Form 3, Pages 68-74
|
|
4 | 3 |
Newton's Laws of Motion
|
Experimental Verification of Newton's Second Law
|
By the end of the
lesson, the learner
should be able to:
Investigate relationship between force and acceleration -Investigate relationship between mass and acceleration -Verify F = ma experimentally -Analyze ticker-tape results -Draw conclusions from experimental data |
Review F = ma through Q/A
-Experiment: Force vs acceleration (constant mass) -Experiment: Mass vs acceleration (constant force) -Analysis of ticker-tape patterns -Data collection and graph plotting -Discussion on experimental errors and improvements |
Ticker-timer
-Trolley -Ticker tape -Elastic cords -Various masses -Scissors -Graph paper -Rulers -Calculator |
KLB Secondary Physics Form 3, Pages 69-71
|
|
4 | 4-5 |
Newton's Laws of Motion
|
Impulse and Change in Momentum
Newton's Third Law of Motion |
By the end of the
lesson, the learner
should be able to:
Define impulse and state its units -Understand impulse-momentum theorem -Calculate impulse using Ft = Δp -Analyze force-time graphs -Apply impulse concept to real situations State Newton's third law of motion -Understand action and reaction pairs -Explain that forces occur in pairs -Apply third law to various situations -Analyze motion in different scenarios |
Q/A review on Newton's second law
-Introduction to impulse concept -Derivation of impulse-momentum theorem -Analysis of force-time graphs and area calculation -Worked examples on impulse calculations -Discussion on applications: car safety, sports Review impulse concepts through Q/A -Demonstration: walking and floor interaction -Demonstration: jumping from boat scenario -Discussion on action-reaction pairs -Examples from daily life: walking, swimming, rocket propulsion -Problem-solving involving third law |
Graph paper
-Force-time graph examples -Calculator -Charts showing car safety features -Sports equipment examples -Worked examples Books for pressure demonstration -Spring balances -Trolleys -String -Charts showing action-reaction examples -Pictures of rockets and jets |
KLB Secondary Physics Form 3, Pages 71-74
KLB Secondary Physics Form 3, Pages 75-80 |
|
5 | 1 |
Newton's Laws of Motion
|
Applications of Newton's Laws - Lifts and Apparent Weight
|
By the end of the
lesson, the learner
should be able to:
Analyze forces in accelerating lifts -Calculate apparent weight in different situations -Understand weightlessness concept -Apply Newton's laws to lift problems -Solve problems involving vertical motion |
Q/A on Newton's third law
-Analysis of forces in lift moving upward with acceleration -Analysis of forces in lift moving downward with acceleration -Calculation of apparent weight in different scenarios -Discussion on weightlessness in spacecraft -Problem-solving session on lift problems |
Spring balance
-Mass -Lift diagrams -Calculator -Free-body diagram charts -Worked examples -Problem worksheets |
KLB Secondary Physics Form 3, Pages 76-78
|
|
5 | 2 |
Newton's Laws of Motion
|
Applications of Newton's Laws - Lifts and Apparent Weight
|
By the end of the
lesson, the learner
should be able to:
Analyze forces in accelerating lifts -Calculate apparent weight in different situations -Understand weightlessness concept -Apply Newton's laws to lift problems -Solve problems involving vertical motion |
Q/A on Newton's third law
-Analysis of forces in lift moving upward with acceleration -Analysis of forces in lift moving downward with acceleration -Calculation of apparent weight in different scenarios -Discussion on weightlessness in spacecraft -Problem-solving session on lift problems |
Spring balance
-Mass -Lift diagrams -Calculator -Free-body diagram charts -Worked examples -Problem worksheets |
KLB Secondary Physics Form 3, Pages 76-78
|
|
5 | 3 |
Newton's Laws of Motion
|
Conservation of Linear Momentum
|
By the end of the
lesson, the learner
should be able to:
State the law of conservation of momentum -Apply conservation of momentum to collisions -Distinguish between elastic and inelastic collisions -Solve collision problems -Understand momentum in explosions |
Review lift problems through Q/A
-Statement and explanation of conservation of momentum -Demonstration: colliding trolleys or balls -Analysis of elastic and inelastic collisions -Worked examples on collision problems -Discussion on explosions and momentum conservation |
Trolleys
-Plasticine -Marbles -Spring balance -Measuring tape -Stopwatch -Calculator -Collision demonstration apparatus |
KLB Secondary Physics Form 3, Pages 80-86
|
|
5 | 4-5 |
Newton's Laws of Motion
|
Applications of Momentum Conservation - Rockets and Jets
Friction - Types and Laws |
By the end of the
lesson, the learner
should be able to:
Explain rocket and jet propulsion -Apply momentum conservation to propulsion systems -Understand recoil velocity calculations -Analyze garden sprinkler operation -Solve recoil problems Define friction and explain its molecular basis -Distinguish between static and kinetic friction -State and apply laws of friction -Understand advantages and disadvantages of friction -Identify methods of reducing friction |
Q/A review on momentum conservation
-Explanation of rocket propulsion principle -Analysis of jet engine operation -Calculation of recoil velocities -Demonstration: balloon rocket or garden sprinkler -Problem-solving on recoil scenarios Review momentum applications through Q/A -Demonstration: block on table with increasing force -Explanation of molecular basis of friction -Discussion on types of friction: static, kinetic, rolling -Investigation of factors affecting friction -Examples of friction in daily life and technology |
Balloons
-String -Straws -Garden sprinkler (if available) -Charts showing rocket/jet engines -Calculator -Worked examples Wooden blocks -Different surfaces -Spring balance -Weights -Lubricants -Sandpaper -Charts showing friction applications -Ball bearings |
KLB Secondary Physics Form 3, Pages 86-87
KLB Secondary Physics Form 3, Pages 87-90 |
|
6 | 1 |
Newton's Laws of Motion
|
Viscosity and Terminal Velocity
|
By the end of the
lesson, the learner
should be able to:
Define viscosity and explain its effects -Understand motion of objects through fluids -Explain terminal velocity concept -Analyze forces on falling objects in fluids -Investigate factors affecting terminal velocity |
Q/A on friction concepts
-Demonstration: steel ball falling through different liquids -Explanation of viscous drag and terminal velocity -Analysis of forces: weight, upthrust, and viscous drag -Investigation of terminal velocity using glycerine -Discussion on applications: parachutes, rain drops |
Tall measuring cylinder
-Glycerine -Steel ball bearings -Water -Stopwatch -Rubber bands -Ruler -Different viscous liquids |
KLB Secondary Physics Form 3, Pages 90-93
|
|
6 | 2 |
Newton's Laws of Motion
|
Viscosity and Terminal Velocity
|
By the end of the
lesson, the learner
should be able to:
Define viscosity and explain its effects -Understand motion of objects through fluids -Explain terminal velocity concept -Analyze forces on falling objects in fluids -Investigate factors affecting terminal velocity |
Q/A on friction concepts
-Demonstration: steel ball falling through different liquids -Explanation of viscous drag and terminal velocity -Analysis of forces: weight, upthrust, and viscous drag -Investigation of terminal velocity using glycerine -Discussion on applications: parachutes, rain drops |
Tall measuring cylinder
-Glycerine -Steel ball bearings -Water -Stopwatch -Rubber bands -Ruler -Different viscous liquids |
KLB Secondary Physics Form 3, Pages 90-93
|
|
6 | 3 |
Work, Energy, Power and Machines
|
Gears and Hydraulic Systems
|
By the end of the
lesson, the learner
should be able to:
Understand gear systems and their operation -Calculate V.R. for gear systems -Explain hydraulic lift principle -Apply Pascal's principle to hydraulic systems -Calculate M.A. and V.R. for hydraulic systems |
Review inclined planes through Q/A
-Demonstration: gear system operation -Calculation of gear ratios and V.R. -Explanation of hydraulic lift principle -Demonstration: Pascal's principle using syringes -Calculation of hydraulic system parameters |
Gear wheels
-Bicycle for gear demonstration -Syringes of different sizes -Water -Tubes -Calculator -Hydraulic system diagrams -Gear ratio charts |
KLB Secondary Physics Form 3, Pages 116-119
|
|
6 | 4-5 |
Work, Energy, Power and Machines
Current Electricity (II) |
Efficiency of Machines
Electric Current and Measurement |
By the end of the
lesson, the learner
should be able to:
Understand factors affecting machine efficiency -Calculate efficiency using different methods -Investigate efficiency of various machines -Understand energy losses in machines -Discuss methods to improve efficiency Define electric current and state its SI unit -Understand conventional current flow -Use ammeters correctly to measure current -Read ammeter scales accurately -Understand current as rate of flow of charge |
Q/A on gears and hydraulic systems
-Investigation: efficiency of pulley system -Discussion on factors causing energy losses -Measurement of input and output work -Calculation of efficiency for different machines -Discussion on improving machine efficiency Q/A review on basic electricity from Form 2 -Definition of electric current and conventional flow -Demonstration: proper ammeter connection in series -Practice reading different ammeter scales -Discussion on digital vs analogue meters -Safety precautions when using electrical equipment |
Various machines for testing
-Spring balances -Measuring tape -Stopwatch -Calculator -Efficiency measurement setup -Lubricants for demonstration Ammeters (analogue and digital) -Dry cells -Connecting wires -Bulbs -Switches -Ammeter scale charts -Safety equipment |
KLB Secondary Physics Form 3, Pages 120-123
KLB Secondary Physics Form 3, Pages 126-130 |
|
7 | 1 |
Current Electricity (II)
|
Series and Parallel Circuits - Current Distribution
|
By the end of the
lesson, the learner
should be able to:
Investigate current in series circuits -Investigate current in parallel circuits -Apply Kirchhoff's current law -Understand current division in parallel circuits -Solve problems involving current distribution |
Review ammeter usage through Q/A
-Experiment: measuring current in series circuit -Experiment: measuring current in parallel circuit -Analysis of current readings and patterns -Statement of Kirchhoff's current law -Problem-solving on current distribution |
Multiple ammeters
-Bulbs -Connecting wires -Dry cells -Switches -Circuit boards -Calculator -Current distribution worksheets |
KLB Secondary Physics Form 3, Pages 130-133
|
|
7 | 2 |
Current Electricity (II)
|
Series and Parallel Circuits - Current Distribution
|
By the end of the
lesson, the learner
should be able to:
Investigate current in series circuits -Investigate current in parallel circuits -Apply Kirchhoff's current law -Understand current division in parallel circuits -Solve problems involving current distribution |
Review ammeter usage through Q/A
-Experiment: measuring current in series circuit -Experiment: measuring current in parallel circuit -Analysis of current readings and patterns -Statement of Kirchhoff's current law -Problem-solving on current distribution |
Multiple ammeters
-Bulbs -Connecting wires -Dry cells -Switches -Circuit boards -Calculator -Current distribution worksheets |
KLB Secondary Physics Form 3, Pages 130-133
|
|
7 | 3 |
Current Electricity (II)
|
Potential Difference and Voltage Measurement
|
By the end of the
lesson, the learner
should be able to:
Define potential difference in terms of work done -State the SI unit of potential difference -Use voltmeters correctly to measure voltage -Understand voltage measurement across components -Read voltmeter scales accurately |
Q/A on current distribution
-Definition of potential difference and work done per unit charge -Demonstration: proper voltmeter connection in parallel -Practice measuring voltage across different components -Comparison of voltmeter and ammeter connections -Safety considerations in voltage measurement |
Voltmeters (analogue and digital)
-Dry cells -Resistors -Bulbs -Connecting wires -Switches -Voltmeter scale charts -Work and charge demonstration materials |
KLB Secondary Physics Form 3, Pages 126-129
|
|
7 | 4-5 |
Current Electricity (II)
|
Series and Parallel Circuits - Voltage Distribution
|
By the end of the
lesson, the learner
should be able to:
Investigate voltage in series circuits -Investigate voltage in parallel circuits -Apply Kirchhoff's voltage law -Understand voltage division in series circuits -Solve problems involving voltage distribution |
Review voltage measurement through Q/A
-Experiment: measuring voltage across series components -Experiment: measuring voltage across parallel components -Analysis of voltage readings and patterns -Statement of Kirchhoff's voltage law -Problem-solving on voltage distribution |
Multiple voltmeters
-Various resistors -Connecting wires -Dry cells -Switches -Circuit boards -Calculator -Voltage distribution worksheets |
KLB Secondary Physics Form 3, Pages 130-133
|
|
8 | 1 |
Current Electricity (II)
|
Ohm's Law - Investigation and Verification
|
By the end of the
lesson, the learner
should be able to:
State Ohm's law -Investigate relationship between voltage and current -Plot V-I graphs for ohmic conductors -Verify Ohm's law experimentally -Understand conditions for Ohm's law validity |
Q/A on voltage distribution
-Experiment: varying voltage and measuring current through resistor -Data collection and table completion -Plotting V-I graph and analyzing slope -Statement and verification of Ohm's law -Discussion on temperature and other conditions |
Rheostat
-Ammeter -Voltmeter -Resistor coils -Connecting wires -Dry cells -Graph paper -Calculator -Ruler |
KLB Secondary Physics Form 3, Pages 131-135
|
|
8 |
mid term exam |
|||||||
9 |
Mid term break |
|||||||
10 | 1 |
Current Electricity (II)
|
Electrical Resistance and Ohm's Law Applications
|
By the end of the
lesson, the learner
should be able to:
Define electrical resistance and its SI unit -Apply Ohm's law to calculate V, I, and R -Understand the relationship R = V/I -Solve problems using Ohm's law -Convert between different units of resistance |
Review Ohm's law investigation through Q/A
-Definition of electrical resistance as V/I ratio -Worked examples applying Ohm's law triangle -Unit conversions: Ω, kΩ, MΩ -Problem-solving session on Ohm's law calculations -Discussion on factors affecting resistance |
Calculator
-Ohm's law triangle charts -Resistor color code charts -Various resistors -Multimeter -Problem worksheets -Unit conversion charts |
KLB Secondary Physics Form 3, Pages 131-135
|
|
10 | 2 |
Current Electricity (II)
|
Ohmic and Non-Ohmic Conductors
|
By the end of the
lesson, the learner
should be able to:
Distinguish between ohmic and non-ohmic conductors -Investigate V-I characteristics of different materials -Understand why some materials don't obey Ohm's law -Analyze V-I graphs for various conductors -Identify practical applications of non-ohmic conductors |
Q/A on Ohm's law applications
-Experiment: V-I characteristics of filament bulb -Experiment: V-I characteristics of diode -Comparison of different V-I graph shapes -Discussion on temperature effects on resistance -Applications of non-ohmic conductors |
Filament bulbs
-Diodes -Thermistors -LDR -Ammeter -Voltmeter -Rheostat -Graph paper -Various conductors for testing |
KLB Secondary Physics Form 3, Pages 134-135
|
|
10 | 3 |
Current Electricity (II)
|
Types of Resistors and Their Applications
|
By the end of the
lesson, the learner
should be able to:
Identify different types of resistors -Understand fixed and variable resistors -Read resistor color codes -Understand applications of special resistors -Use rheostats and potentiometers |
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable -Practice reading resistor color codes -Demonstration: rheostat and potentiometer operation -Discussion on thermistors and LDR applications -Practical applications in circuits |
Various resistor types
-Color code charts -Rheostat -Potentiometer -Thermistor -LDR -Multimeter -Circuit boards -Application examples |
KLB Secondary Physics Form 3, Pages 135-140
|
|
10 | 4-5 |
Current Electricity (II)
|
Types of Resistors and Their Applications
Measurement of Resistance - Voltmeter-Ammeter Method |
By the end of the
lesson, the learner
should be able to:
Identify different types of resistors -Understand fixed and variable resistors -Read resistor color codes -Understand applications of special resistors -Use rheostats and potentiometers Describe voltmeter-ammeter method -Set up circuits for resistance measurement -Calculate resistance from V and I readings -Understand limitations of the method -Analyze experimental errors |
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable -Practice reading resistor color codes -Demonstration: rheostat and potentiometer operation -Discussion on thermistors and LDR applications -Practical applications in circuits Q/A on resistor types -Setup of voltmeter-ammeter circuit -Measurement of voltage and current for unknown resistor -Calculation of resistance using R = V/I -Discussion on measurement errors and accuracy -Comparison with multimeter readings |
Various resistor types
-Color code charts -Rheostat -Potentiometer -Thermistor -LDR -Multimeter -Circuit boards -Application examples Unknown resistors -Voltmeter -Ammeter -Rheostat -Connecting wires -Dry cells -Switches -Calculator -Multimeter for comparison |
KLB Secondary Physics Form 3, Pages 135-140
KLB Secondary Physics Form 3, Pages 140-142 |
|
11 | 1 |
Current Electricity (II)
|
Wheatstone Bridge Method
|
By the end of the
lesson, the learner
should be able to:
Understand the principle of Wheatstone bridge -Set up Wheatstone bridge circuit -Balance the bridge for resistance measurement -Calculate unknown resistance using bridge equation -Appreciate accuracy of Wheatstone bridge method |
Review voltmeter-ammeter method through Q/A
-Introduction to Wheatstone bridge principle -Demonstration of bridge balance condition -Setup and operation of Wheatstone bridge -Calculation using R₁/R₂ = R₃/R₄ -Comparison of accuracy with other methods |
Wheatstone bridge apparatus
-Galvanometer -Known resistors -Unknown resistors -Connecting wires -Battery -Calculator -Bridge equation charts |
KLB Secondary Physics Form 3, Pages 142-144
|
|
11 | 2 |
Current Electricity (II)
|
Resistors in Series - Theory and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive formula for resistors in series -Calculate total resistance for series combination -Understand current and voltage in series circuits -Solve problems involving series resistors -Apply series resistance in circuit analysis |
Q/A on resistance measurement methods
-Derivation of Rs = R₁ + R₂ + R₃... -Demonstration: measuring total resistance of series combination -Analysis of current (same) and voltage (divided) in series -Worked examples on series resistance calculations -Problem-solving session |
Resistors of known values
-Multimeter -Connecting wires -Circuit boards -Calculator -Series circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 144-147
|
|
11 | 3 |
Current Electricity (II)
|
Resistors in Parallel - Theory and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive formula for resistors in parallel -Calculate total resistance for parallel combination -Understand current and voltage in parallel circuits -Solve problems involving parallel resistors -Apply parallel resistance in circuit analysis |
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃... -Demonstration: measuring total resistance of parallel combination -Analysis of voltage (same) and current (divided) in parallel -Worked examples on parallel resistance calculations -Problem-solving session |
Resistors of known values
-Multimeter -Connecting wires -Circuit boards -Calculator -Parallel circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 147-150
|
|
11 | 4-5 |
Current Electricity (II)
|
Resistors in Parallel - Theory and Calculations
Mixed Circuits - Series-Parallel Combinations |
By the end of the
lesson, the learner
should be able to:
Derive formula for resistors in parallel -Calculate total resistance for parallel combination -Understand current and voltage in parallel circuits -Solve problems involving parallel resistors -Apply parallel resistance in circuit analysis Analyze circuits with series-parallel combinations -Apply reduction techniques to complex circuits -Calculate total resistance of mixed circuits -Determine current and voltage in different branches -Solve complex circuit problems |
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃... -Demonstration: measuring total resistance of parallel combination -Analysis of voltage (same) and current (divided) in parallel -Worked examples on parallel resistance calculations -Problem-solving session Q/A on parallel resistance -Introduction to mixed circuit analysis techniques -Step-by-step reduction of complex circuits -Worked examples on series-parallel combinations -Problem-solving on mixed circuits -Discussion on circuit analysis strategies |
Resistors of known values
-Multimeter -Connecting wires -Circuit boards -Calculator -Parallel circuit diagrams -Problem worksheets Various resistors -Circuit boards -Connecting wires -Multimeter -Calculator -Complex circuit diagrams -Step-by-step analysis charts |
KLB Secondary Physics Form 3, Pages 147-150
KLB Secondary Physics Form 3, Pages 150-153 |
|
12 | 1 |
Current Electricity (II)
|
Electromotive Force (EMF) and Terminal Voltage
|
By the end of the
lesson, the learner
should be able to:
Define electromotive force (EMF) -Distinguish between EMF and terminal voltage -Understand the concept of lost voltage -Relate EMF to work done by the cell -Measure EMF using high resistance voltmeter |
Review mixed circuits through Q/A
-Definition of EMF as work done per unit charge -Demonstration: measuring EMF with open circuit -Comparison of EMF and terminal voltage under load -Discussion on energy conversion in cells -Measurement techniques for EMF |
High resistance voltmeter
-Various cells -Switches -Resistors -Connecting wires -EMF measurement setup -Energy conversion charts |
KLB Secondary Physics Form 3, Pages 150-152
|
|
12 | 2 |
Current Electricity (II)
|
Internal Resistance of Cells
|
By the end of the
lesson, the learner
should be able to:
Define internal resistance -Understand the relationship E = V + Ir -Calculate internal resistance experimentally -Understand factors affecting internal resistance -Apply internal resistance in circuit calculations |
Q/A on EMF concepts
-Introduction to internal resistance concept -Derivation of E = V + Ir relationship -Experiment: measuring internal resistance using different loads -Plotting E vs R graph to find internal resistance -Discussion on factors affecting internal resistance |
Various cells
-Resistors of different values -Voltmeter -Ammeter -Connecting wires -Graph paper -Calculator -Internal resistance apparatus |
KLB Secondary Physics Form 3, Pages 150-153
|
|
12 | 3 |
Current Electricity (II)
|
Cells in Series and Parallel
|
By the end of the
lesson, the learner
should be able to:
Analyze cells connected in series -Analyze cells connected in parallel -Calculate total EMF and internal resistance -Understand advantages of different connections -Solve problems involving cell combinations |
Review internal resistance through Q/A
-Analysis of identical cells in series connection -Analysis of identical cells in parallel connection -Calculation of equivalent EMF and internal resistance -Discussion on practical applications and advantages -Problem-solving on cell combinations |
Multiple identical cells
-Connecting wires -Voltmeter -Ammeter -Resistors -Calculator -Cell combination diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 152-153
|
|
12 | 4-5 |
Current Electricity (II)
|
Cells in Series and Parallel
Advanced Circuit Analysis and Problem Solving |
By the end of the
lesson, the learner
should be able to:
Analyze cells connected in series -Analyze cells connected in parallel -Calculate total EMF and internal resistance -Understand advantages of different connections -Solve problems involving cell combinations Apply Kirchhoff's laws to complex circuits -Solve circuits with multiple sources -Analyze circuits with internal resistance -Use systematic approaches to circuit problems -Integrate all electricity concepts |
Review internal resistance through Q/A
-Analysis of identical cells in series connection -Analysis of identical cells in parallel connection -Calculation of equivalent EMF and internal resistance -Discussion on practical applications and advantages -Problem-solving on cell combinations Q/A on cell combinations -Application of Kirchhoff's current and voltage laws -Systematic approach to complex circuit analysis -Worked examples with multiple EMF sources -Problem-solving session covering all electricity topics -Discussion on practical circuit applications |
Multiple identical cells
-Connecting wires -Voltmeter -Ammeter -Resistors -Calculator -Cell combination diagrams -Problem worksheets Complex circuit examples -Calculator -Circuit analysis worksheets -Multiple EMF sources -Various resistors -Comprehensive problem sets -Kirchhoff's law charts |
KLB Secondary Physics Form 3, Pages 152-153
KLB Secondary Physics Form 3, Pages 126-153 |
|
13-14 |
End term exam |
Your Name Comes Here