Home






SCHEME OF WORK
Mathematics
Form 4 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Loci
Introduction to Loci
By the end of the lesson, the learner should be able to:

-Define locus and understand its meaning
-Distinguish between locus of points, lines, and regions
-Identify real-world examples of loci
-Understand the concept of movement according to given laws

-Demonstrate door movement to show path traced by corner
-Use string and pencil to show circular locus
-Discuss examples: clock hands, pendulum swing
-Students trace paths of moving objects
Exercise books
-Manila paper
-String
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 73-75
2 2
Loci
Basic Locus Concepts and Laws
By the end of the lesson, the learner should be able to:

-Understand that loci follow specific laws or conditions
-Identify the laws governing different types of movement
-Distinguish between 2D and 3D loci
-Apply locus concepts to simple problems

-Physical demonstrations with moving objects
-Students track movement of classroom door
-Identify laws governing pendulum movement
-Practice stating locus laws clearly
Exercise books
-Manila paper
-String
-Real objects
KLB Secondary Mathematics Form 4, Pages 73-75
2 3
Loci
Perpendicular Bisector Locus
By the end of the lesson, the learner should be able to:

-Define perpendicular bisector locus
-Construct perpendicular bisector using compass and ruler
-Prove that points on perpendicular bisector are equidistant from endpoints
-Apply perpendicular bisector to solve problems

-Construct perpendicular bisector on manila paper
-Measure distances to verify equidistance property
-Use folding method to find perpendicular bisector
-Practice with different line segments
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
2 4
Loci
Perpendicular Bisector Locus
By the end of the lesson, the learner should be able to:

-Define perpendicular bisector locus
-Construct perpendicular bisector using compass and ruler
-Prove that points on perpendicular bisector are equidistant from endpoints
-Apply perpendicular bisector to solve problems

-Construct perpendicular bisector on manila paper
-Measure distances to verify equidistance property
-Use folding method to find perpendicular bisector
-Practice with different line segments
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
2 5
Loci
Properties and Applications of Perpendicular Bisector
By the end of the lesson, the learner should be able to:

-Understand perpendicular bisector in 3D space
-Apply perpendicular bisector to find circumcenters
-Solve practical problems using perpendicular bisector
-Use perpendicular bisector in triangle constructions

-Find circumcenter of triangle using perpendicular bisectors
-Solve water pipe problems (equidistant from two points)
-Apply to real-world location problems
-Practice with various triangle types
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
2 6
Loci
Locus of Points at Fixed Distance from a Point
By the end of the lesson, the learner should be able to:

-Define circle as locus of points at fixed distance from center
-Construct circles with given radius using compass
-Understand sphere as 3D locus from fixed point
-Solve problems involving circular loci

-Construct circles of different radii
-Demonstrate with string of fixed length
-Discuss radar coverage, radio signal range
-Students create circles with various measurements
Exercise books
-Manila paper
-Compass
-String
KLB Secondary Mathematics Form 4, Pages 75-82
2 7
Loci
Locus of Points at Fixed Distance from a Line
By the end of the lesson, the learner should be able to:

-Define locus of points at fixed distance from straight line
-Construct parallel lines at given distances
-Understand cylindrical surface in 3D
-Apply to practical problems like road margins

-Construct parallel lines using ruler and set square
-Mark points at equal distances from given line
-Discuss road design, river banks, field boundaries
-Practice with various distances and orientations
Exercise books
-Manila paper
-Ruler
-Set square
KLB Secondary Mathematics Form 4, Pages 75-82
3 1
Loci
Angle Bisector Locus
By the end of the lesson, the learner should be able to:

-Define angle bisector locus
-Construct angle bisectors using compass and ruler
-Prove equidistance property of angle bisector
-Apply angle bisector to find incenters

-Construct angle bisectors for various angles
-Verify equidistance from angle arms
-Find incenter of triangle using angle bisectors
-Practice with acute, obtuse, and right angles
Exercise books
-Manila paper
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
3 2
Loci
Properties and Applications of Angle Bisector
By the end of the lesson, the learner should be able to:

-Understand relationship between angle bisectors in triangles
-Apply angle bisector theorem
-Solve problems involving inscribed circles
-Use angle bisectors in geometric constructions

-Construct inscribed circle using angle bisectors
-Apply angle bisector theorem to solve problems
-Find external angle bisectors
-Solve practical surveying problems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
3 3
Loci
Properties and Applications of Angle Bisector
By the end of the lesson, the learner should be able to:

-Understand relationship between angle bisectors in triangles
-Apply angle bisector theorem
-Solve problems involving inscribed circles
-Use angle bisectors in geometric constructions

-Construct inscribed circle using angle bisectors
-Apply angle bisector theorem to solve problems
-Find external angle bisectors
-Solve practical surveying problems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
3 4
Loci
Constant Angle Locus
By the end of the lesson, the learner should be able to:

-Understand constant angle locus concept
-Construct constant angle loci using arc method
-Apply circle theorems to constant angle problems
-Solve problems involving angles in semicircles

-Demonstrate constant angle using protractor
-Construct arc passing through two points
-Use angles in semicircle property
-Practice with different angle measures
Exercise books
-Manila paper
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
3 5
Loci
Advanced Constant Angle Constructions
By the end of the lesson, the learner should be able to:

-Construct constant angle loci for various angles
-Find centers of constant angle arcs
-Solve complex constant angle problems
-Apply to geometric theorem proving

-Find centers for 60°, 90°, 120° angle loci
-Construct major and minor arcs
-Solve problems involving multiple angle constraints
-Verify constructions using measurement
Exercise books
-Manila paper
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
3 6
Loci
Introduction to Intersecting Loci
By the end of the lesson, the learner should be able to:

-Understand concept of intersecting loci
-Identify points satisfying multiple conditions
-Find intersection points of two loci
-Apply intersecting loci to solve practical problems

-Demonstrate intersection of two circles
-Find points equidistant from two points AND at fixed distance from third point
-Solve simple two-condition problems
-Practice identifying intersection points
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 83-89
3 7
Loci
Intersecting Circles and Lines
By the end of the lesson, the learner should be able to:

-Find intersections of circles with lines
-Determine intersections of two circles
-Solve problems with line and circle combinations
-Apply to geometric construction problems

-Construct intersecting circles and lines
-Find common tangents to circles
-Solve problems involving circle-line intersections
-Apply to wheel and track problems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 83-89
4 1
Loci
Triangle Centers Using Intersecting Loci
By the end of the lesson, the learner should be able to:

-Find circumcenter using perpendicular bisector intersections
-Locate incenter using angle bisector intersections
-Determine centroid and orthocenter
-Apply triangle centers to solve problems

-Construct all four triangle centers
-Compare properties of different triangle centers
-Use triangle centers in geometric proofs
-Solve problems involving triangle center properties
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 83-89
4 2
Loci
Complex Intersecting Loci Problems
By the end of the lesson, the learner should be able to:

-Solve problems with three or more conditions
-Find regions satisfying multiple constraints
-Apply intersecting loci to optimization problems
-Use systematic approach to complex problems

-Solve treasure hunt type problems
-Find optimal locations for facilities
-Apply to surveying and engineering problems
-Practice systematic problem-solving approach
Exercise books
-Manila paper
-Compass
-Real-world scenarios
KLB Secondary Mathematics Form 4, Pages 83-89
4 3
Loci
Complex Intersecting Loci Problems
By the end of the lesson, the learner should be able to:

-Solve problems with three or more conditions
-Find regions satisfying multiple constraints
-Apply intersecting loci to optimization problems
-Use systematic approach to complex problems

-Solve treasure hunt type problems
-Find optimal locations for facilities
-Apply to surveying and engineering problems
-Practice systematic problem-solving approach
Exercise books
-Manila paper
-Compass
-Real-world scenarios
KLB Secondary Mathematics Form 4, Pages 83-89
4 4
Loci
Introduction to Loci of Inequalities
By the end of the lesson, the learner should be able to:

-Understand graphical representation of inequalities
-Identify regions satisfying inequality conditions
-Distinguish between boundary lines and regions
-Apply inequality loci to practical constraints

-Shade regions representing simple inequalities
-Use broken and solid lines appropriately
-Practice with distance inequalities
-Apply to real-world constraint problems
Exercise books
-Manila paper
-Ruler
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 89-92
4 5
Loci
Distance Inequality Loci
By the end of the lesson, the learner should be able to:

-Represent distance inequalities graphically
-Solve problems with "less than" and "greater than" distances
-Find regions satisfying distance constraints
-Apply to safety zone problems

-Shade regions inside and outside circles
-Solve exclusion zone problems
-Apply to communication range problems
-Practice with multiple distance constraints
Exercise books
-Manila paper
-Compass
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 89-92
4 6
Loci
Combined Inequality Loci
By the end of the lesson, the learner should be able to:

-Solve problems with multiple inequality constraints
-Find intersection regions of inequality loci
-Apply to optimization and feasibility problems
-Use systematic shading techniques

-Find feasible regions for multiple constraints
-Solve planning problems with restrictions
-Apply to resource allocation scenarios
-Practice systematic region identification
Exercise books
-Manila paper
-Ruler
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 89-92
4 7
Loci
Advanced Inequality Applications
By the end of the lesson, the learner should be able to:

-Apply inequality loci to linear programming introduction
-Solve real-world optimization problems
-Find maximum and minimum values in regions
-Use graphical methods for decision making

-Solve simple linear programming problems
-Find optimal points in feasible regions
-Apply to business and farming scenarios
-Practice identifying corner points
Exercise books
-Manila paper
-Ruler
-Real problem data
KLB Secondary Mathematics Form 4, Pages 89-92
5 1
Loci
Introduction to Loci Involving Chords
By the end of the lesson, the learner should be able to:

-Review chord properties in circles
-Understand perpendicular bisector of chords
-Apply chord theorems to loci problems
-Construct equal chords in circles

-Review chord bisector theorem
-Construct chords of given lengths
-Find centers using chord properties
-Practice with chord intersection theorems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
5 2
Loci
Introduction to Loci Involving Chords
By the end of the lesson, the learner should be able to:

-Review chord properties in circles
-Understand perpendicular bisector of chords
-Apply chord theorems to loci problems
-Construct equal chords in circles

-Review chord bisector theorem
-Construct chords of given lengths
-Find centers using chord properties
-Practice with chord intersection theorems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
5 3
Loci
Chord-Based Constructions
By the end of the lesson, the learner should be able to:

-Construct circles through three points using chords
-Find loci of chord midpoints
-Solve problems with intersecting chords
-Apply chord properties to geometric constructions

-Construct circles using three non-collinear points
-Find locus of midpoints of parallel chords
-Solve chord intersection problems
-Practice with chord-tangent relationships
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
5 4
Loci
Advanced Chord Problems
By the end of the lesson, the learner should be able to:

-Solve complex problems involving multiple chords
-Apply power of point theorem
-Find loci related to chord properties
-Use chords in circle geometry proofs

-Apply intersecting chords theorem
-Solve problems with chord-secant relationships
-Find loci of points with equal power
-Practice with tangent-chord angles
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
5 5
Loci
Integration of All Loci Types
By the end of the lesson, the learner should be able to:

-Combine different types of loci in single problems
-Solve comprehensive loci challenges
-Apply multiple loci concepts simultaneously
-Use loci in geometric investigations

-Solve multi-step loci problems
-Combine circle, line, and angle loci
-Apply to real-world complex scenarios
-Practice systematic problem-solving
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 73-94
5 6
REVISION

Paper 1 Revision
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 1 question paper
5 7
Paper 1 Revision
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Students’ Notes, Revision Texts
paper 1 question paper
6 1
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
6 2
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper
6 3
paper 2 Revision
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Students’ Notes, Revision Texts
Paper 2 question paper
6 4
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
6 5
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 1 question paper
6 6
Paper 1 Revision
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Students’ Notes, Revision Texts
paper 1 question paper
6 7
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
7 1
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper
7 2
paper 2 Revision
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Students’ Notes, Revision Texts
Paper 2 question paper
7 3
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
7 4
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 1 question paper
7 5
Paper 1 Revision
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Students’ Notes, Revision Texts
paper 1 question paper
7 6
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
7 7
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper
8 1
paper 2 Revision
Section I: Mixed Question Practice
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Past Paper 2s, Marking Schemes
Students’ Notes, Revision Texts
Paper 2 question paper
8 2
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– practice extended problem solving – interpret and use graphs, diagrams and data – present answers clearly for maximum marks
Students attempt structured questions under timed conditions Peer review and corrections
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
8 3
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 1 question paper
8 4
Paper 1 Revision
Section I: Mixed Question Practice
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Past Paper 1s, Marking Schemes
Students’ Notes, Revision Texts
paper 1 question paper
8 5
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– practice extended problem solving – interpret and use graphs, diagrams and data – present answers clearly for maximum marks
Students attempt structured questions under timed conditions Peer review and corrections
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
8 6
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper
8 7
paper 2 Revision
Section I: Mixed Question Practice
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Past Paper 2s, Marking Schemes
Students’ Notes, Revision Texts
Paper 2 question paper
9 1
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– practice extended problem solving – interpret and use graphs, diagrams and data – present answers clearly for maximum marks
Students attempt structured questions under timed conditions Peer review and corrections
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
9 2
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 1 question paper
9 3
Paper 1 Revision
Section I: Mixed Question Practice
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Past Paper 1s, Marking Schemes
Students’ Notes, Revision Texts
paper 1 question paper
9 4
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– practice extended problem solving – interpret and use graphs, diagrams and data – present answers clearly for maximum marks
Students attempt structured questions under timed conditions Peer review and corrections
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
9 5
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper
9 6
paper 2 Revision
Section I: Mixed Question Practice
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– integrate knowledge to solve mixed short questions – apply logical reasoning and time management – identify common errors and correct them
Timed practice with mixed short-answer questions Class discussion of solutions
Past Papers, Marking Schemes
Past Paper 2s, Marking Schemes
Students’ Notes, Revision Texts
Paper 2 question paper
9 7
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– practice extended problem solving – interpret and use graphs, diagrams and data – present answers clearly for maximum marks
Students attempt structured questions under timed conditions Peer review and corrections
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
10-12

K C PE exams


Your Name Comes Here


Download

Feedback