Home






SCHEME OF WORK
Biology
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening and revision of assignment

2 1
REPRODUCTION IN PLANTS AND ANIMALS
Reproduction in Amphibia and Mammalian Characteristics
By the end of the lesson, the learner should be able to:
To describe reproduction in frogs and toads. To explain seasonal breeding and egg protection. To state characteristics of mammalian reproduction. To define viviparous, placental mammals and mammary glands.
Examination of frog egg masses and jelly coating functions. Discussion: Seasonal breeding patterns and tadpole development. Teacher exposition: Mammalian reproduction characteristics. Q/A: Viviparous vs oviparous reproduction and mammary gland functions.
Frog eggs specimens, Charts showing amphibian and mammalian reproduction, Hand lens
Certificate Biology Form 3, Pages 148-149
2 2
REPRODUCTION IN PLANTS AND ANIMALS
Female Reproductive System Structure
Stages of Reproduction and Oogenesis
By the end of the lesson, the learner should be able to:
To draw and label the human female reproductive system. To identify functions of ovaries, oviducts, uterus and vagina. To describe uterine structure and endometrium function. To explain placenta formation.
Drawing and labeling: Complete female reproductive system. Teacher demonstration using charts and models. Discussion: Functions of each organ and structure-function relationships. Detailed explanation: Endometrium role and placenta formation during pregnancy.
Charts of female reproductive system, Drawing materials, Models if available, Textbook
Flow charts, Oogenesis diagrams, Drawing materials, Textbook
Certificate Biology Form 3, Pages 149-151
2 3-4
REPRODUCTION IN PLANTS AND ANIMALS
Menstrual Cycle - Follicle Development and Ovulation
Hormonal Control and Menstrual Phases
Ovum Structure and Fertilisation Process
Early Development and Twins Formation
Implantation and Pregnancy Indicators
By the end of the lesson, the learner should be able to:
To describe the 28-day menstrual cycle. To explain FSH action on follicle development. To describe Graafian follicle formation and ovulation. To outline corpus luteum formation and function.
To draw and label structure of human ovum. To describe sperm movement in female tract. To explain acrosome function during fertilisation. To outline zygote formation and nuclear fusion.
Teacher exposition: Complete menstrual cycle overview. Discussion: FSH stimulation and Graafian follicle development. Detailed explanation: LH surge, ovulation process on day 14. Q/A: Corpus luteum development and progesterone secretion.
Drawing and labeling: Mature human ovum structure. Discussion: Sperm journey from vagina to oviduct. Teacher exposition: Acrosome enzymes and zona pellucida penetration. Q/A: Nuclear fusion, chromosome combination and zygote formation.
Menstrual cycle charts, Drawing materials, Textbook
Hormone level graphs, Menstrual cycle phase charts, Textbook
Ovum structure charts, Fertilisation diagrams, Drawing materials, Textbook
Developmental stages charts, Twin formation diagrams, Drawing materials, Textbook
Implantation charts, Pregnancy test demonstration materials, Textbook
Certificate Biology Form 3, Pages 152-154
Certificate Biology Form 3, Pages 155-157
2 5
REPRODUCTION IN PLANTS AND ANIMALS
Gestation and Embryonic Membranes
By the end of the lesson, the learner should be able to:
To define gestation period in humans. To identify extra-embryonic membranes. To describe amnion, chorion and allantois functions. To explain amniotic fluid importance.
Teacher exposition: 40-week gestation period comparison with other mammals. Detailed discussion: Formation and functions of amnion, chorion, allantois. Q/A: Amniotic fluid functions - protection, support, lubrication. Drawing embryonic membrane arrangement.
Gestation charts, Fetal development models, Drawing materials, Textbook
Certificate Biology Form 3, Pages 159-161
3 1
REPRODUCTION IN PLANTS AND ANIMALS
Placenta Structure and Functions
By the end of the lesson, the learner should be able to:
To describe placenta structure and formation. To explain maternal and fetal blood separation. To identify nutrient transfer and gas exchange functions. To discuss placental barrier limitations.
Detailed discussion: Placenta as temporary organ with dual tissue origin. Teacher exposition: Blood vessel arrangement and separation mechanisms. Discussion: Nutrient, oxygen transfer and harmful substance passage. Q/A: Placental protection and its limitations.
Placenta structure diagrams, Function charts, Drawing materials, Textbook
Certificate Biology Form 3, Pages 161-163
3 2
REPRODUCTION IN PLANTS AND ANIMALS
Pregnancy Hormones and Parturition
By the end of the lesson, the learner should be able to:
To identify hormones during pregnancy. To explain HCG, progesterone and oestrogen roles. To describe hormonal changes triggering birth. To explain the parturition process.
Discussion: Hormone secretion patterns during pregnancy. Teacher exposition: HCG, progesterone, oestrogen functions and interactions. Detailed explanation: Hormonal triggers for birth and oxytocin role. Q/A: Uterine contractions, cervix dilation and delivery stages.
Pregnancy hormone charts, Birth process diagrams, Hormone level graphs, Textbook
Certificate Biology Form 3, Pages 163-165
3 3-4
REPRODUCTION IN PLANTS AND ANIMALS
Male Reproductive System Structure and Functions
Sperm Structure and Male Hormones
HIV/AIDS - Causes and Transmission
By the end of the lesson, the learner should be able to:
To draw and label male reproductive system. To identify testes, epididymis, vas deferens and accessory glands. To describe functions of each component. To explain scrotum function and temperature regulation.
To draw and label spermatozoon structure. To explain head, middle piece and tail functions. To describe testosterone and FSH roles. To identify secondary sexual characteristics.
Drawing and labeling: Complete male reproductive system. Teacher demonstration using charts and models. Discussion: Functions of testes, epididymis, vas deferens, accessory glands. Q/A: Scrotum location and temperature regulation for sperm production.
Drawing and labeling: Detailed sperm structure showing all components. Discussion: Sperm adaptations for fertilization and motility. Teacher exposition: Hormone control of sperm production and male development. Q/A: Testosterone effects and secondary sexual characteristics.
Male reproductive system charts, Drawing materials, Models if available, Textbook
Sperm structure diagrams, Male hormone charts, Drawing materials, Textbook
AIDS awareness charts, HIV transmission diagrams, Educational materials, Textbook
Certificate Biology Form 3, Pages 164-166
Certificate Biology Form 3, Pages 166-167
3 5
REPRODUCTION IN PLANTS AND ANIMALS
AIDS Symptoms and Prevention
By the end of the lesson, the learner should be able to:
To identify early and late AIDS symptoms. To describe opportunistic diseases. To explain AIDS prevention methods. To discuss social responsibility and behavior change.
Discussion: Early AIDS symptoms and progression to full syndrome. Teacher exposition: Opportunistic diseases and their effects. Detailed explanation: Prevention strategies and behavior modification. Group discussion: Social responsibility and community health.
AIDS symptom charts, Prevention posters, Case study materials, Textbook
Certificate Biology Form 3, Pages 170-171
4 1
REPRODUCTION IN PLANTS AND ANIMALS
Bacterial STIs - Gonorrhea and Syphilis
By the end of the lesson, the learner should be able to:
To describe gonorrhea causes, symptoms and treatment. To explain syphilis stages and progression. To identify transmission modes for bacterial STIs. To discuss antibiotic treatment and prevention.
Detailed discussion: Gonorrhea bacterium and reproductive tract effects. Teacher exposition: Syphilis stages - primary, secondary, tertiary. Q/A: Transmission modes and treatment with antibiotics. Discussion: Prevention methods and partner responsibility.
STI information charts, Bacterial infection diagrams, Textbook
Certificate Biology Form 3, Pages 171-172
4 2
REPRODUCTION IN PLANTS AND ANIMALS
GROWTH AND DEVELOPMENT
Viral STIs and Other Infections
Introduction and Definitions
By the end of the lesson, the learner should be able to:
To describe genital herpes causes and symptoms. To explain hepatitis B transmission and effects. To identify trichomoniasis and other STIs. To emphasize prevention strategies for all STIs.
Discussion: Viral STIs and their incurable nature. Teacher exposition: Herpes simplex virus effects and dormancy. Q/A: Hepatitis B liver effects and vaccination. Discussion: Comprehensive STI prevention and faithful relationships.
Viral STI charts, Prevention strategy posters, Textbook
Charts showing growth and development, Textbook, Wall charts
Certificate Biology Form 3, Page 172
4 3-4
GROWTH AND DEVELOPMENT
Measurement of Growth
Patterns and Rate of Growth
Factors Controlling Plant Growth
Stages of Growth and Life Cycle
By the end of the lesson, the learner should be able to:
To identify different methods of measuring growth. To explain linear dimensions, mass and dry weight measurements. To describe advantages and limitations of each method. To calculate growth rates.
To identify external factors affecting plant growth. To explain how oxygen, temperature, water, light and space influence growth. To describe internal factors including hormones. To relate factors to plant survival and adaptation.
Discussion: Methods of measuring growth in plants and animals. Teacher exposition: Linear measurements, mass, dry weight procedures. Practical demonstration: Measuring techniques. Q/A: Why dry weight is more accurate for plants. Calculate growth rate examples.
Detailed discussion: External factors - oxygen, temperature, water, light, space. Teacher exposition: How each factor affects biochemical processes. Q/A: Competition effects and resource limitation. Introduction to internal factors and plant hormones.
Measuring instruments, Scales, Rulers, Calculators, Sample plants
Growth curve charts, Graph paper, Calculators, Sample data sets
Environmental factor charts, Temperature scales, Light meters if available, Textbook
Plant life cycle charts, Examples of annual and perennial plants, Textbook
Certificate Biology Form 3, Pages 178-179
Certificate Biology Form 3, Pages 180-181
4 5
GROWTH AND DEVELOPMENT
Seed Structure - Monocots and Dicots
Conditions for Germination
Types of Germination
By the end of the lesson, the learner should be able to:
To examine and draw structure of monocot and dicot seeds. To identify parts of bean and maize seeds. To compare structural differences between seed types. To explain functions of seed parts.
Practical examination: Soaked bean and maize seeds. Dissection and identification of seed parts. Drawing and labeling: Bean seed cotyledons, embryo, testa. Drawing maize grain: endosperm, scutellum, plumule, radicle. Comparison table of monocot vs dicot seeds.
Soaked bean and maize seeds, Hand lens, Scalpels, Drawing materials, Iodine solution
Germination apparatus, Seeds at different stages, Temperature monitoring equipment, Textbook
Germinating seeds at various stages, Drawing materials, Observation trays, Hand lens
Certificate Biology Form 3, Pages 182-183
5 1
GROWTH AND DEVELOPMENT
Germination Practical Investigation
By the end of the lesson, the learner should be able to:
To set up germination experiments for different seed types. To observe daily changes in germinating seeds. To record measurements and growth data. To compare germination patterns.
Practical work: Setting up germination experiments with bean and maize seeds. Daily observations and measurements of seedling growth. Recording data: root length, shoot height, leaf development. Drawing stages of germination over time. Data collection for growth rate calculations.
Seeds, Petri dishes, Cotton wool, Measuring rulers, Data recording sheets, Clay pots
Certificate Biology Form 3, Pages 200-201
5 2
GROWTH AND DEVELOPMENT
Primary Growth and Meristems
By the end of the lesson, the learner should be able to:
To describe primary growth in plants. To identify apical meristems and their functions. To explain tissue development from meristems. To relate meristem activity to plant growth.
Discussion: Primary growth in seedlings and herbaceous plants. Teacher exposition: Apical meristem structure and cell characteristics. Q/A: Meristem cell division and differentiation processes. Drawing diagrams showing meristem distribution in plants.
Meristem distribution charts, Drawing materials, Microscope slides of meristems, Textbook
Certificate Biology Form 3, Pages 186-187
5 3-4
GROWTH AND DEVELOPMENT
Secondary Growth and Cambium Activity
Annual Rings and Plant Dormancy
Seed Dormancy and Breaking Mechanisms
By the end of the lesson, the learner should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support.
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy.
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
Tree trunk cross-sections, Dormant plant organs, Charts, Textbook
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
Certificate Biology Form 3, Pages 186-188
Certificate Biology Form 3, Pages 188-189
5 5
GROWTH AND DEVELOPMENT
Plant Growth Substances - Auxins
By the end of the lesson, the learner should be able to:
To describe discovery of plant hormones by Fritz Went. To explain auxin functions in stems, leaves, roots and fruits. To identify IAA structure and translocation. To discuss practical applications of auxins.
Teacher exposition: Went's experiments with oat coleoptiles and auxin discovery. Discussion: Auxin effects in different plant organs. Q/A: Apical dominance and parthenocarpy. Practical applications: rooting powders, herbicides, fruit development.
Auxin experiment diagrams, Plant cuttings, Rooting powder demonstration, Textbook
Certificate Biology Form 3, Pages 189-192
6 1
GROWTH AND DEVELOPMENT
Gibberellins, Cytokinins and Other Hormones
By the end of the lesson, the learner should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects.
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
Plant hormone effect charts, Ripening fruits, Textbook
Certificate Biology Form 3, Pages 192-194
6 2
GROWTH AND DEVELOPMENT
Practical Applications of Plant Hormones
By the end of the lesson, the learner should be able to:
To explain commercial uses of plant hormones. To describe hormone applications in agriculture and horticulture. To identify hormone uses in crop production. To discuss economic benefits of hormone applications.
Discussion: Commercial applications of auxins in propagation. Teacher exposition: Gibberellins in brewing and dwarf plant treatment. Q/A: Hormone use in fruit production and weed control. Case studies: Economic benefits in agriculture and horticulture.
Hormone application examples, Agricultural product samples, Case study materials
Certificate Biology Form 3, Pages 191-194
6 3-4
GROWTH AND DEVELOPMENT
Animal Growth Patterns and Life Cycles
Complete Metamorphosis
Incomplete Metamorphosis
By the end of the lesson, the learner should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups.
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis.
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
Growth curve charts, Animal development examples, Graph paper, Textbook
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
Certificate Biology Form 3, Pages 193-194
Certificate Biology Form 3, Pages 198-199
6 5
GROWTH AND DEVELOPMENT
Hormonal Control of Growth in Animals
By the end of the lesson, the learner should be able to:
To identify growth hormones in different animals. To explain human growth hormone from pituitary gland. To describe insect molting hormones - ecdysone and juvenile hormone. To explain thyroxine role in frog metamorphosis.
Discussion: Growth hormone control in mammals. Teacher exposition: Pituitary gland and human growth regulation. Q/A: Insect hormone balance - ecdysone and neotonin effects. Discussion: Thyroxine control of amphibian metamorphosis.
Hormone control charts, Animal development diagrams, Textbook
Certificate Biology Form 3, Page 199
7-8

End term exam

9

Closing

10 1
GROWTH AND DEVELOPMENT
Growth Measurement Practical
By the end of the lesson, the learner should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences.
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
Certificate Biology Form 3, Pages 201-202

Your Name Comes Here


Download

Feedback