If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 3 |
Algebra
|
Algebraic Expressions - Forming algebraic expressions
|
By the end of the
lesson, the learner
should be able to:
- Define an algebraic expression - Form algebraic expressions from real-life situations - Value the use of algebraic expressions in daily life |
- Identify similarities and differences in bottle tops
- Group bottle tops based on identified similarities/differences - Form expressions to represent the total number of bottle tops - Go around the school compound identifying and grouping objects |
How do we form algebraic expressions from real-life situations?
|
Oxford Active Mathematics pg. 90
- Bottle tops - Objects in the environment |
- Observation
- Oral questions
- Written assignments
|
|
1 | 4 |
Algebra
|
Algebraic Expressions - Forming algebraic expressions
Algebraic Expressions - Simplifying algebraic expressions Algebraic Expressions - Simplifying algebraic expressions |
By the end of the
lesson, the learner
should be able to:
- Form algebraic expressions from statements - Identify terms in algebraic expressions - Appreciate use of algebraic expressions in real life |
- Discuss the scenario of Ochieng's shop stock
- Form expressions for the number of items in the shop - Share expressions formed with other groups - Identify terms in the expressions formed |
What is an algebraic expression?
|
Oxford Active Mathematics pg. 91
- Writing materials Oxford Active Mathematics pg. 92 Oxford Active Mathematics pg. 93 Oxford Active Mathematics pg. 94-95 - Blank cards |
- Observation
- Oral questions
- Written assignments
|
|
1 | 5 |
Algebra
|
Linear Equations - Forming linear equations
Linear Equations - Forming and simplifying linear equations Linear Equations - Solving linear equations Linear Equations - Solving linear equations |
By the end of the
lesson, the learner
should be able to:
- Define a linear equation - Form linear equations in one unknown - Value the use of linear equations in real life |
- Use a beam balance with sand and bottle tops to demonstrate equality
- Form equations that represent the balance - Analyze Akelo's travel time scenario - Form equations from word problems |
Why do we use linear equations in real life?
|
Oxford Active Mathematics pg. 97
- Beam balance - Sand - Bottle tops Oxford Active Mathematics pg. 98-99 - Writing materials Oxford Active Mathematics pg. 100 - Marble Oxford Active Mathematics pg. 101 |
- Observation
- Oral questions
- Written assignments
|
|
2 | 1 |
Algebra
|
Linear Equations - Solving linear equations
Linear Equations - Application of linear equations |
By the end of the
lesson, the learner
should be able to:
- Solve linear equations with brackets - Solve equations involving fractions - Value the use of equations in solving problems |
- Create word questions involving linear equations
- Form and solve linear equations from word problems - Discuss steps to solve equations: open brackets, collect like terms, isolate variable - Apply equation solving to real-life contexts |
When do we use linear equations in real life?
|
Oxford Active Mathematics pg. 102
- Worksheets Oxford Active Mathematics pg. 103-104 - Geometrical instruments |
- Observation
- Oral questions
- Written tests
|
|
2 | 2 |
Algebra
|
Linear Inequalities - Inequality symbols
|
By the end of the
lesson, the learner
should be able to:
- Identify inequality symbols - Apply inequality symbols to statements - Value the use of inequality symbols in comparing quantities |
- Make inequality cards with symbols
- Measure masses and heights of different objects - Compare quantities using inequality symbols - Read statements and use inequality symbols to compare quantities |
Why is it necessary to use inequality symbols?
|
Oxford Active Mathematics pg. 105
- Inequality cards - Objects - Tape measure - Beam balance |
- Observation
- Oral questions
- Written assignments
|
|
2 | 3 |
Algebra
|
Linear Inequalities - Forming simple linear inequalities
|
By the end of the
lesson, the learner
should be able to:
- Form simple linear inequalities from statements - Interpret inequality statements - Show interest in using inequalities |
- Discuss the scenario of antelopes in Ol Donyo Sabuk National Park
- Use inequality symbol to represent "less than 150" - Form inequality statements from information - Convert word statements to inequality expressions |
How do we represent statements using inequalities?
|
Oxford Active Mathematics pg. 106
- Writing materials Oxford Active Mathematics pg. 107 |
- Observation
- Oral questions
- Written tests
|
|
2 | 4 |
Algebra
|
Linear Inequalities - Illustrating simple inequalities
Linear Inequalities - Forming compound inequalities |
By the end of the
lesson, the learner
should be able to:
- Draw number lines to represent inequalities - Illustrate simple inequalities on a number line - Value the use of number lines in representing inequalities |
- Make inequality cards and draw a number line
- Stand on numbers and point to direction of inequality - Use circles and arrows to show the range of values - Practice illustrating different inequalities on number lines |
How do we illustrate simple linear inequalities on a number line?
|
Oxford Active Mathematics pg. 108
- Piece of chalk/stick Oxford Active Mathematics pg. 109-110 - Inequality cards |
- Observation
- Oral questions
- Written assignments
|
|
2 | 5 |
Algebra
|
Linear Inequalities - Forming compound inequalities
Linear Inequalities - Illustrating compound inequalities |
By the end of the
lesson, the learner
should be able to:
- Form compound inequalities from statements - Solve problems involving compound inequalities - Appreciate compound inequalities in real life |
- Analyze salary range statements: "more than 1,200 but less than 2,500"
- Form compound inequalities from real situations like fare, pitch dimensions - Practice writing inequalities in the form "lower bound < x < upper bound" - Create and solve word problems with compound inequalities |
When do we use compound inequalities in real life?
|
Oxford Active Mathematics pg. 111
- Writing materials Oxford Active Mathematics pg. 112 - Inequality cards - Piece of chalk/stick |
- Observation
- Oral questions
- Written assignments
|
|
3 | 1 |
Algebra
Measurements Measurements |
Linear Inequalities - Illustrating compound inequalities
Pythagorean Relationship - Sides of a right-angled triangle Pythagorean Relationship - Deriving Pythagorean relationship |
By the end of the
lesson, the learner
should be able to:
- Form compound inequalities from practical situations - Illustrate the inequalities on number lines - Appreciate the application of inequalities in real life |
- Analyze Maleche's plasticine weighing scenario with beam balances
- Form inequalities for each weighing and combine them - Draw number lines to illustrate the compound inequalities - Relate unbalanced beam balances to inequalities |
How do we apply compound inequalities to real-life situations?
|
Oxford Active Mathematics pg. 113-114
- Blank cards - Oxford Active Mathematics 7 - Page 116 - Squared paper - Ruler - Ladder or long stick - Page 117 - Squared or graph paper |
- Observation
- Oral questions
- Written assignments
|
|
3 | 2 |
Measurements
|
Pythagorean Relationship - Working with Pythagorean relationship
Pythagorean Relationship - Applications of Pythagorean relationship Length - Conversion of units of length Length - Addition and subtraction of length |
By the end of the
lesson, the learner
should be able to:
- Apply Pythagorean relationship to calculate lengths of sides of right-angled triangles - Verify whether a triangle is right-angled using the Pythagorean relationship - Value the application of Pythagorean relationship in solving problems |
- Identify right-angled triangles from given measurements
- Calculate the length of the third side of a right-angled triangle when two sides are given - Verify whether given measurements can form a right-angled triangle |
Why do we learn about the Pythagorean relationship?
|
- Oxford Active Mathematics 7
- Page 118 - Squared or graph paper - Ruler - Calculator - Page 119 - Metre rule - Tape measure - Page 122 - One-metre stick or string - Ruler or metre rule - Page 125 - Conversion tables of units of length |
- Written work
- Oral questions
- Class activities
|
|
3 | 3 |
Measurements
|
Length - Multiplication and division of length
Length - Perimeter of plane figures Length - Circumference of circles |
By the end of the
lesson, the learner
should be able to:
- Multiply length by whole numbers - Divide length by whole numbers - Appreciate the use of multiplication and division of length in daily life |
- Multiply lengths in different units by whole numbers
- Divide lengths in different units by whole numbers - Relate multiplication and division of length to real-life situations |
Where do we use multiplication and division of length in real life?
|
- Oxford Active Mathematics 7
- Page 126 - Writing materials - Page 128 - Paper cut-outs - Ruler - String - Page 130 - Set square - Circular objects |
- Written work
- Observation
- Class activities
|
|
3 | 4 |
Measurements
|
Length - Applications of length
Area - Square metre, acres and hectares |
By the end of the
lesson, the learner
should be able to:
- Apply perimeter and circumference in real life situations - Solve problems involving perimeter and circumference - Value the application of length measurements in solving problems |
- Identify real-life situations where perimeter and circumference are used
- Work out problems involving fencing, binding edges, and circular objects - Discuss the application of perimeter and circumference in agriculture, construction and other fields |
How do we use measurements of length in daily activities?
|
- Oxford Active Mathematics 7
- Page 132 - Measuring tools - Models of different shapes - Page 135 - 1 m sticks - Ruler - Pieces of string or masking tape |
- Oral questions
- Written assignments
- Class activities
|
|
3 | 5 |
Measurements
|
Area - Area of rectangle and parallelogram
Area - Area of a rhombus |
By the end of the
lesson, the learner
should be able to:
- Work out the area of a rectangle - Work out the area of a parallelogram - Appreciate the use of area in real life situations |
- Create rectangles and parallelograms using sticks and strings
- Establish the formula for area of rectangle as length × width - Transform a rectangle to a parallelogram to establish that area of a parallelogram = base × height |
How do we calculate the area of a rectangle and a parallelogram?
|
- Oxford Active Mathematics 7
- Page 137 - Pieces of string or masking tape - Sticks - Paper - Scissors - Page 139 - Four pieces of stick of equal length |
- Observation
- Written assignments
- Class activities
|
|
4 | 1 |
Measurements
|
Area - Area of a trapezium
Area - Area of a circle |
By the end of the
lesson, the learner
should be able to:
- Define a trapezium as a quadrilateral with one pair of parallel sides - Calculate the area of a trapezium - Value the concept of area in problem-solving |
- Draw and cut out trapezium shapes
- Arrange two identical trapeziums to form a parallelogram - Derive the formula for the area of a trapezium as half the sum of parallel sides times the height |
How do we calculate the area of a trapezium?
|
- Oxford Active Mathematics 7
- Page 141 - Ruler - Pieces of paper - Pair of scissors - Page 143 - Pair of compasses |
- Observation
- Written assignments
- Class activities
|
|
4 | 2 |
Measurements
|
Area - Area of borders
Area - Area of combined shapes |
By the end of the
lesson, the learner
should be able to:
- Define a border as the region between two shapes - Calculate the area of borders - Value the application of area of borders in real life |
- Create borders by placing one shape inside another
- Calculate the area of a border by subtracting the area of the inner shape from the area of the outer shape - Solve real-life problems involving borders |
How do we calculate the area of a border?
|
- Oxford Active Mathematics 7
- Page 144 - Pair of scissors - Pieces of paper - Ruler - Page 146 |
- Observation
- Written assignments
- Class activities
|
|
4 | 3 |
Measurements
|
Area - Applications of area
Volume and Capacity - Cubic metre as unit of volume |
By the end of the
lesson, the learner
should be able to:
- Apply formulas for areas of different shapes in real life situations - Solve problems involving area - Recognise use of area in real life situations |
- Discuss the application of area in different fields such as construction, agriculture, and interior design
- Calculate areas of various shapes in real-life contexts - Solve problems involving area measurements |
Where do we apply area measurements in real life?
|
- Oxford Active Mathematics 7
- Page 147 - Chart showing area formulas - Calculator - Page 149 - Twelve sticks of length 1 m each - Old pieces of paper - Pair of scissors - Ruler |
- Oral questions
- Written assignments
- Class activities
|
|
4 | 4 |
Measurements
|
Volume and Capacity - Conversion of cubic metres to cubic centimetres
|
By the end of the
lesson, the learner
should be able to:
- Convert volume from cubic metres to cubic centimetres - Relate cubic metres to cubic centimetres - Show interest in converting units of volume |
- Measure dimensions of a cube in metres and calculate its volume in cubic metres
- Measure the same cube in centimetres and calculate its volume in cubic centimetres - Establish the relationship between cubic metres and cubic centimetres (1m³ = 1,000,000cm³) |
How do we convert volume in cubic metres to cubic centimetres?
|
- Oxford Active Mathematics 7
- Page 150 - A cube whose sides measure 1 m - Ruler |
- Observation
- Oral questions
- Written work
|
|
4 | 5 |
Measurements
|
Volume and Capacity - Conversion of cubic centimetres to cubic metres
Volume and Capacity - Volume of cubes and cuboids |
By the end of the
lesson, the learner
should be able to:
- Convert volume from cubic centimetres to cubic metres - Solve problems involving conversion of units of volume - Value the importance of converting units of volume |
- Measure dimensions of various objects in centimetres and calculate their volumes in cubic centimetres
- Convert the volumes from cubic centimetres to cubic metres - Establish that to convert from cubic centimetres to cubic metres, divide by 1,000,000 |
How do we convert volume in cubic centimetres to cubic metres?
|
- Oxford Active Mathematics 7
- Page 152 - Ruler or tape measure - Calculator - Page 153 - Clay or plasticine - Ruler - Mathematics textbooks |
- Observation
- Oral questions
- Written work
|
|
5 | 1 |
Measurements
|
Volume and Capacity - Volume of a cylinder
Volume and Capacity - Relationship between cubic measurements and litres |
By the end of the
lesson, the learner
should be able to:
- Identify the cross-section of a cylinder as a circle - Calculate the volume of a cylinder - Show interest in calculating volumes of cylinders |
- Make a pile of coins of the same denomination
- Identify the cross-section of the pile as a circle - Establish that volume of a cylinder = πr²h - Calculate volumes of various cylinders |
How do we work out the volume of a cylinder?
|
- Oxford Active Mathematics 7
- Page 155 - Kenyan coins of the same denomination - Circular objects - Calculator - Page 156 - A cube whose sides measure 10 cm - Container - Basin - Graduated cylinder |
- Observation
- Written assignments
- Class activities
|
|
5 | 2 |
Measurements
|
Volume and Capacity - Relating volume to capacity
Volume and Capacity - Working out capacity of containers |
By the end of the
lesson, the learner
should be able to:
- Relate volume to capacity - Convert between volume and capacity - Show interest in the relationship between volume and capacity |
- Calculate the volume of various containers
- Use bottles to fill the containers with water - Count the number of bottles needed to fill each container - Compare the volume of containers with their capacity |
How is volume related to capacity?
|
- Oxford Active Mathematics 7
- Page 157 - Bottles with capacities labelled on them - Containers of different sizes - Page 158 |
- Observation
- Oral questions
- Written work
|
|
5 | 3 |
Measurements
|
Time, Distance and Speed - Units of measuring time
Time, Distance and Speed - Conversion of units of time |
By the end of the
lesson, the learner
should be able to:
- Identify units of measuring time - Read time on analogue and digital clocks - Appreciate the importance of time in daily activities |
- Read time on different types of clocks
- Identify units of time (hours, minutes, seconds) - Discuss the importance of time management |
In which units can we express time?
|
- Oxford Active Mathematics 7
- Page 160 - Analogue and digital clocks - Page 161 - Conversion tables of units of time |
- Observation
- Oral questions
- Written work
|
|
5 | 4 |
Measurements
|
Time, Distance and Speed - Conversion of units of distance
Time, Distance and Speed - Identification of speed |
By the end of the
lesson, the learner
should be able to:
- Convert distance from one unit to another - Apply conversion of distance in real life situations - Appreciate the importance of converting units of distance |
- Estimate distances between places in kilometres
- Convert distances from kilometres to metres and vice versa - Create conversion tables for units of distance |
How do we convert distance from one unit to another?
|
- Oxford Active Mathematics 7
- Page 162 - Conversion tables of units of distance - Page 163 - Stopwatch - Metre stick |
- Observation
- Oral questions
- Written work
|
|
5 | 5 |
Measurements
|
Time, Distance and Speed - Calculation of speed in m/s
Time, Distance and Speed - Calculation of speed in km/h |
By the end of the
lesson, the learner
should be able to:
- Calculate speed in metres per second (m/s) - Apply the formula for speed in real life situations - Value the importance of speed in daily activities |
- Measure distances in metres
- Record time taken to cover the distances in seconds - Calculate speed by dividing distance by time - Express speed in metres per second |
Which steps do you follow in order to calculate speed in metres per second?
|
- Oxford Active Mathematics 7
- Page 164 - Stopwatch - Metre stick - Calculator - Page 165 - Charts showing distances between locations |
- Observation
- Written assignments
- Class activities
|
|
6 | 1 |
Measurements
|
Time, Distance and Speed - Conversion of speed from km/h to m/s
Time, Distance and Speed - Conversion of units of speed from m/s to km/h |
By the end of the
lesson, the learner
should be able to:
- Convert speed from km/h to m/s - Apply conversion of speed in real life situations - Show interest in converting units of speed |
- Convert distance from kilometres to metres
- Convert time from hours to seconds - Apply the relationship: 1 km/h = 1000 m ÷ 3600 s = 5/18 m/s - Solve problems involving conversion of speed from km/h to m/s |
How do we convert speed in kilometres per hour to metres per second?
|
- Oxford Active Mathematics 7
- Page 166 - Calculator - Conversion charts - Page 168 |
- Observation
- Written assignments
- Class activities
|
|
6 | 2 |
Measurements
|
Temperature - Measuring temperature
Temperature - Comparing temperature |
By the end of the
lesson, the learner
should be able to:
- Describe the temperature conditions of the immediate environment - Measure temperature using a thermometer - Value the importance of measuring temperature |
- Observe and discuss temperature conditions in the environment (warm, hot, cold)
- Use a thermometer to measure temperature - Record temperature readings in degrees Celsius |
How do we measure temperature?
|
- Oxford Active Mathematics 7
- Page 170 - Thermometer or thermogun - Page 171 - Thermometer - Various substances to test temperature |
- Observation
- Oral questions
- Written work
|
|
6 | 3 |
Measurements
|
Temperature - Units of measuring temperature
|
By the end of the
lesson, the learner
should be able to:
- Identify units of measuring temperature as degree Celsius and Kelvin - Appreciate the use of standard units in measuring temperature - Show interest in temperature measurement |
- Discuss the Celsius and Kelvin scales
- Measure temperatures using a thermometer - Record temperature readings in degrees Celsius - Discuss absolute zero and the Kelvin scale |
In which units do we measure temperature?
|
- Oxford Active Mathematics 7
- Page 172 - Thermometer - Temperature charts |
- Observation
- Oral questions
- Written work
|
|
6 | 4 |
Measurements
|
Temperature - Conversion from degrees Celsius to Kelvin
Temperature - Conversion from Kelvin to degrees Celsius |
By the end of the
lesson, the learner
should be able to:
- Convert temperature from degrees Celsius to Kelvin - Apply the formula for conversion - Appreciate the importance of converting units of temperature |
- Measure temperatures in degrees Celsius
- Convert the temperatures to Kelvin using the formula K = °C + 273 - Create conversion tables for temperature |
How do we convert temperature from degrees Celsius to Kelvin?
|
- Oxford Active Mathematics 7
- Page 173 - Thermometer - Ice or very cold water - Calculator - Page 174 - Writing materials |
- Observation
- Written assignments
- Class activities
|
|
6 | 5 |
Measurements
|
Temperature - Working out temperature
Money - Profit and loss |
By the end of the
lesson, the learner
should be able to:
- Calculate temperature changes - Work out temperature in degrees Celsius and Kelvin - Appreciate temperature changes in the environment |
- Record temperatures at different times of the day
- Calculate temperature differences - Solve problems involving temperature changes - Convert temperature changes between Celsius and Kelvin |
How do we work out temperature in degrees Celsius and in Kelvin?
|
- Oxford Active Mathematics 7
- Page 175 - Temperature data - Calculator - Page 176 - Imitation items - Imitation money |
- Observation
- Written assignments
- Class activities
|
|
7 | 1 |
Measurements
|
Money - Percentage profit and loss
Money - Discount |
By the end of the
lesson, the learner
should be able to:
- Calculate percentage profit and loss - Apply percentage profit and loss in real life situations - Value the importance of calculating percentage profit and loss |
- Express profit or loss as a fraction of the buying price
- Convert the fraction to percentage - Calculate percentage profit and loss in various scenarios - Solve problems involving percentage profit and loss |
How do we calculate percentage profit and percentage loss?
|
- Oxford Active Mathematics 7
- Page 179 - Worksheets - Calculator - Page 181 - Writing materials - Shop price lists |
- Observation
- Written assignments
- Class activities
|
|
7 | 2 |
Measurements
|
Money - Percentage discount
Money - Commission |
By the end of the
lesson, the learner
should be able to:
- Calculate percentage discount - Apply percentage discount in real life situations - Show interest in percentage discount calculations |
- Express discount as a fraction of the marked price
- Convert the fraction to percentage - Calculate percentage discount in various scenarios - Solve problems involving percentage discount |
How do we calculate percentage discount?
|
- Oxford Active Mathematics 7
- Page 182 - Worksheets - Calculator - Page 184 - Writing materials |
- Observation
- Written assignments
- Class activities
|
|
7 | 3 |
Measurements
|
Money - Percentage commission
Money - Bills at home |
By the end of the
lesson, the learner
should be able to:
- Calculate percentage commission - Apply percentage commission in real life situations - Value the concept of percentage commission |
- Express commission as a fraction of the value of sales
- Convert the fraction to percentage - Calculate percentage commission in various scenarios - Solve problems involving percentage commission |
How do we calculate percentage commission?
|
- Oxford Active Mathematics 7
- Page 186 - Writing materials - Calculator - Page 187 - Sample bills |
- Observation
- Written assignments
- Class activities
|
|
7 | 4 |
Measurements
|
Money - Preparing bills
Money - Postal charges |
By the end of the
lesson, the learner
should be able to:
- Prepare bills for goods and services - Apply bill preparation in real life situations - Show interest in preparing bills |
- Role-play seller and buyer scenarios
- Prepare bills for goods and services - Include necessary details in bills (items, quantities, unit prices, totals) |
How do we prepare bills?
|
- Oxford Active Mathematics 7
- Page 188 - Samples of shopping bills - Imitation money - Page 190 - Inland postal charges tables - Writing materials |
- Observation
- Written assignments
- Class activities
|
|
7 | 5 |
Measurements
|
Money - International postal charges
Money - Mobile money services Money - Mobile money transactions |
By the end of the
lesson, the learner
should be able to:
- Distinguish between inland and international postal services - Calculate international postal charges - Value the importance of international postal services |
- Study tables showing international postal charges
- Calculate charges for sending items to different countries - Compare charges for different methods of sending items internationally |
How do we calculate charges to send items to other countries?
|
- Oxford Active Mathematics 7
- Page 192 - International postal charges tables - Writing materials - Page 198 - Charts showing mobile money charges - Page 199 - Mobile money transaction charges charts |
- Observation
- Written assignments
- Class activities
|
Your Name Comes Here