If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 4 |
GROWTH AND DEVELOPMENT
|
Introduction and Definitions
|
By the end of the
lesson, the learner
should be able to:
To distinguish between growth and development. To define growth as permanent increase in size and weight. To explain development as structural changes and differentiation. To relate growth to cell division and tissue formation. |
Q/A: Review reproduction concepts. Discussion: Definition of growth vs development. Teacher exposition: Cell division, differentiation and tissue formation. Q/A: Examples of growth and development in organisms. Discussion: Growth as characteristic of living organisms.
|
Charts showing growth and development, Textbook, Wall charts
|
Certificate Biology Form 3, Pages 178-179
|
|
1 | 5 |
GROWTH AND DEVELOPMENT
|
Measurement of Growth
|
By the end of the
lesson, the learner
should be able to:
To identify different methods of measuring growth. To explain linear dimensions, mass and dry weight measurements. To describe advantages and limitations of each method. To calculate growth rates. |
Discussion: Methods of measuring growth in plants and animals. Teacher exposition: Linear measurements, mass, dry weight procedures. Practical demonstration: Measuring techniques. Q/A: Why dry weight is more accurate for plants. Calculate growth rate examples.
|
Measuring instruments, Scales, Rulers, Calculators, Sample plants
|
Certificate Biology Form 3, Pages 178-179
|
|
2 | 1-2 |
GROWTH AND DEVELOPMENT
|
Patterns and Rate of Growth
|
By the end of the
lesson, the learner
should be able to:
To describe continuous and discontinuous growth patterns. To interpret growth curves for plants. To explain factors affecting growth rate. To calculate growth rates from given data. |
Analysis of growth curves showing continuous vs discontinuous patterns. Teacher exposition: Growth phases A-B, B-C, C-D, D-E, E-F. Discussion: Environmental effects on growth patterns. Mathematical exercises: Calculating growth rates from data.
|
Growth curve charts, Graph paper, Calculators, Sample data sets
|
Certificate Biology Form 3, Pages 179-180
|
|
2 | 3 |
GROWTH AND DEVELOPMENT
|
Factors Controlling Plant Growth
|
By the end of the
lesson, the learner
should be able to:
To identify external factors affecting plant growth. To explain how oxygen, temperature, water, light and space influence growth. To describe internal factors including hormones. To relate factors to plant survival and adaptation. |
Detailed discussion: External factors - oxygen, temperature, water, light, space. Teacher exposition: How each factor affects biochemical processes. Q/A: Competition effects and resource limitation. Introduction to internal factors and plant hormones.
|
Environmental factor charts, Temperature scales, Light meters if available, Textbook
|
Certificate Biology Form 3, Pages 180-181
|
|
2 | 4 |
GROWTH AND DEVELOPMENT
|
Stages of Growth and Life Cycle
|
By the end of the
lesson, the learner
should be able to:
To describe stages from seed to maturity. To distinguish between annuals and perennials. To identify vegetative and reproductive phases. To explain germination, primary and secondary growth. |
Discussion: Plant life cycle from seed to maturity. Teacher exposition: Vegetative vs reproductive growth phases. Q/A: Differences between annuals and perennials with examples. Overview of germination, primary and secondary growth stages.
|
Plant life cycle charts, Examples of annual and perennial plants, Textbook
|
Certificate Biology Form 3, Pages 181-182
|
|
2 | 5 |
GROWTH AND DEVELOPMENT
|
Seed Structure - Monocots and Dicots
|
By the end of the
lesson, the learner
should be able to:
To examine and draw structure of monocot and dicot seeds. To identify parts of bean and maize seeds. To compare structural differences between seed types. To explain functions of seed parts. |
Practical examination: Soaked bean and maize seeds. Dissection and identification of seed parts. Drawing and labeling: Bean seed cotyledons, embryo, testa. Drawing maize grain: endosperm, scutellum, plumule, radicle. Comparison table of monocot vs dicot seeds.
|
Soaked bean and maize seeds, Hand lens, Scalpels, Drawing materials, Iodine solution
|
Certificate Biology Form 3, Pages 182-183
|
|
3 | 1-2 |
GROWTH AND DEVELOPMENT
|
Conditions for Germination
|
By the end of the
lesson, the learner
should be able to:
To identify conditions necessary for seed germination. To explain roles of water, oxygen and temperature in germination. To describe enzyme activation and food mobilization. To investigate scarification effects. |
Detailed discussion: Water absorption, enzyme activation, hydrolysis reactions. Teacher exposition: Oxygen requirements for respiration and ATP production. Q/A: Temperature effects on enzyme activity. Discussion: Scarification and testa permeability. Demonstration of vernalization concept.
|
Germination apparatus, Seeds at different stages, Temperature monitoring equipment, Textbook
|
Certificate Biology Form 3, Pages 183-184
|
|
3 | 3 |
GROWTH AND DEVELOPMENT
|
Types of Germination
|
By the end of the
lesson, the learner
should be able to:
To distinguish between epigeal and hypogeal germination. To describe hypocotyl and epicotyl elongation. To explain cotyledon behavior in each type. To give examples of plants showing each germination type. |
Practical observation: Germinating bean and maize seeds at different stages. Teacher exposition: Epigeal germination - hypocotyl elongation, cotyledon emergence. Discussion: Hypogeal germination - epicotyl elongation, cotyledons remain underground. Drawing comparative diagrams of both types.
|
Germinating seeds at various stages, Drawing materials, Observation trays, Hand lens
|
Certificate Biology Form 3, Pages 184-186
|
|
3 | 4 |
GROWTH AND DEVELOPMENT
|
Germination Practical Investigation
|
By the end of the
lesson, the learner
should be able to:
To set up germination experiments for different seed types. To observe daily changes in germinating seeds. To record measurements and growth data. To compare germination patterns. |
Practical work: Setting up germination experiments with bean and maize seeds. Daily observations and measurements of seedling growth. Recording data: root length, shoot height, leaf development. Drawing stages of germination over time. Data collection for growth rate calculations.
|
Seeds, Petri dishes, Cotton wool, Measuring rulers, Data recording sheets, Clay pots
|
Certificate Biology Form 3, Pages 200-201
|
|
3 | 5 |
GROWTH AND DEVELOPMENT
|
Primary Growth and Meristems
|
By the end of the
lesson, the learner
should be able to:
To describe primary growth in plants. To identify apical meristems and their functions. To explain tissue development from meristems. To relate meristem activity to plant growth. |
Discussion: Primary growth in seedlings and herbaceous plants. Teacher exposition: Apical meristem structure and cell characteristics. Q/A: Meristem cell division and differentiation processes. Drawing diagrams showing meristem distribution in plants.
|
Meristem distribution charts, Drawing materials, Microscope slides of meristems, Textbook
|
Certificate Biology Form 3, Pages 186-187
|
|
4 | 1-2 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
|
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
|
Certificate Biology Form 3, Pages 186-188
|
|
4 | 3 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
|
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
|
Certificate Biology Form 3, Pages 186-188
|
|
4 | 4 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
|
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
|
Certificate Biology Form 3, Pages 186-188
|
|
4 | 5 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
|
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
|
Certificate Biology Form 3, Pages 186-188
|
|
5 | 1-2 |
GROWTH AND DEVELOPMENT
|
Annual Rings and Plant Dormancy
|
By the end of the
lesson, the learner
should be able to:
To explain annual ring formation in temperate trees. To describe factors causing plant dormancy. To identify dormancy in buds, seeds and organs. To explain dormancy advantages for plant survival. |
Discussion: Annual growth seasons and ring formation. Teacher exposition: Environmental factors triggering dormancy. Q/A: Metabolic changes during dormancy periods. Discussion: Dormancy in bulbs, corms, rhizomes. Examples of seasonal dormancy in tropical plants.
|
Tree trunk cross-sections, Dormant plant organs, Charts, Textbook
|
Certificate Biology Form 3, Page 188
|
|
5 | 3 |
GROWTH AND DEVELOPMENT
|
Seed Dormancy and Breaking Mechanisms
|
By the end of the
lesson, the learner
should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy. |
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
|
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
|
Certificate Biology Form 3, Pages 188-189
|
|
5 | 4 |
GROWTH AND DEVELOPMENT
|
Seed Dormancy and Breaking Mechanisms
|
By the end of the
lesson, the learner
should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy. |
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
|
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
|
Certificate Biology Form 3, Pages 188-189
|
|
5 | 5 |
GROWTH AND DEVELOPMENT
|
Seed Dormancy and Breaking Mechanisms
|
By the end of the
lesson, the learner
should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy. |
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
|
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
|
Certificate Biology Form 3, Pages 188-189
|
|
6 | 1-2 |
GROWTH AND DEVELOPMENT
|
Plant Growth Substances - Auxins
|
By the end of the
lesson, the learner
should be able to:
To describe discovery of plant hormones by Fritz Went. To explain auxin functions in stems, leaves, roots and fruits. To identify IAA structure and translocation. To discuss practical applications of auxins. |
Teacher exposition: Went's experiments with oat coleoptiles and auxin discovery. Discussion: Auxin effects in different plant organs. Q/A: Apical dominance and parthenocarpy. Practical applications: rooting powders, herbicides, fruit development.
|
Auxin experiment diagrams, Plant cuttings, Rooting powder demonstration, Textbook
|
Certificate Biology Form 3, Pages 189-192
|
|
6 | 3 |
GROWTH AND DEVELOPMENT
|
Gibberellins, Cytokinins and Other Hormones
|
By the end of the
lesson, the learner
should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects. |
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
|
Plant hormone effect charts, Ripening fruits, Textbook
|
Certificate Biology Form 3, Pages 192-194
|
|
6 | 4 |
GROWTH AND DEVELOPMENT
|
Gibberellins, Cytokinins and Other Hormones
|
By the end of the
lesson, the learner
should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects. |
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
|
Plant hormone effect charts, Ripening fruits, Textbook
|
Certificate Biology Form 3, Pages 192-194
|
|
6 | 5 |
GROWTH AND DEVELOPMENT
|
Gibberellins, Cytokinins and Other Hormones
|
By the end of the
lesson, the learner
should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects. |
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
|
Plant hormone effect charts, Ripening fruits, Textbook
|
Certificate Biology Form 3, Pages 192-194
|
|
7 | 1-2 |
GROWTH AND DEVELOPMENT
|
Practical Applications of Plant Hormones
|
By the end of the
lesson, the learner
should be able to:
To explain commercial uses of plant hormones. To describe hormone applications in agriculture and horticulture. To identify hormone uses in crop production. To discuss economic benefits of hormone applications. |
Discussion: Commercial applications of auxins in propagation. Teacher exposition: Gibberellins in brewing and dwarf plant treatment. Q/A: Hormone use in fruit production and weed control. Case studies: Economic benefits in agriculture and horticulture.
|
Hormone application examples, Agricultural product samples, Case study materials
|
Certificate Biology Form 3, Pages 191-194
|
|
7 | 3 |
GROWTH AND DEVELOPMENT
|
Animal Growth Patterns and Life Cycles
|
By the end of the
lesson, the learner
should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups. |
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
|
Growth curve charts, Animal development examples, Graph paper, Textbook
|
Certificate Biology Form 3, Pages 193-194
|
|
7 | 4 |
GROWTH AND DEVELOPMENT
|
Animal Growth Patterns and Life Cycles
|
By the end of the
lesson, the learner
should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups. |
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
|
Growth curve charts, Animal development examples, Graph paper, Textbook
|
Certificate Biology Form 3, Pages 193-194
|
|
7 | 5 |
GROWTH AND DEVELOPMENT
|
Animal Growth Patterns and Life Cycles
|
By the end of the
lesson, the learner
should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups. |
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
|
Growth curve charts, Animal development examples, Graph paper, Textbook
|
Certificate Biology Form 3, Pages 193-194
|
|
8 | 1-2 |
GROWTH AND DEVELOPMENT
|
Complete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe complete metamorphosis stages. To explain life cycle of housefly and butterfly. To identify egg, larva, pupa and adult stages. To discuss economic importance of insects with complete metamorphosis. |
Detailed study: Housefly life cycle - egg, maggot, pupa, imago. Teacher exposition: Butterfly development - caterpillar, chrysalis, adult. Q/A: Structural and behavioral differences between stages. Discussion: Economic importance - pests, silk production.
|
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
|
Certificate Biology Form 3, Pages 195-198
|
|
8 | 3 |
GROWTH AND DEVELOPMENT
|
Incomplete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis. |
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
|
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
|
Certificate Biology Form 3, Pages 198-199
|
|
8 | 4 |
GROWTH AND DEVELOPMENT
|
Incomplete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis. |
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
|
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
|
Certificate Biology Form 3, Pages 198-199
|
|
8 | 5 |
GROWTH AND DEVELOPMENT
|
Incomplete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis. |
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
|
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
|
Certificate Biology Form 3, Pages 198-199
|
|
9 | 1-2 |
GROWTH AND DEVELOPMENT
|
Hormonal Control of Growth in Animals
|
By the end of the
lesson, the learner
should be able to:
To identify growth hormones in different animals. To explain human growth hormone from pituitary gland. To describe insect molting hormones - ecdysone and juvenile hormone. To explain thyroxine role in frog metamorphosis. |
Discussion: Growth hormone control in mammals. Teacher exposition: Pituitary gland and human growth regulation. Q/A: Insect hormone balance - ecdysone and neotonin effects. Discussion: Thyroxine control of amphibian metamorphosis.
|
Hormone control charts, Animal development diagrams, Textbook
|
Certificate Biology Form 3, Page 199
|
|
9 | 3 |
GROWTH AND DEVELOPMENT
|
Growth Measurement Practical
|
By the end of the
lesson, the learner
should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences. |
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
|
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
|
Certificate Biology Form 3, Pages 201-202
|
|
9 | 4 |
GROWTH AND DEVELOPMENT
|
Growth Measurement Practical
|
By the end of the
lesson, the learner
should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences. |
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
|
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
|
Certificate Biology Form 3, Pages 201-202
|
|
9 | 3-4 |
GROWTH AND DEVELOPMENT
|
Growth Measurement Practical
|
By the end of the
lesson, the learner
should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences. |
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
|
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
|
Certificate Biology Form 3, Pages 201-202
|
|
9 |
End term exams |
Your Name Comes Here