If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
|
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
|
K.L.B. BOOK II P.126
|
|
2 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reaction of carbon with acids.
Preparation of CO2.
Properties of CO2. Chemical equations for reactions involving CO2. |
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with acids. Prepare CO2 in the lab. Write balanced CO2. |
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. Give examples of reactions. Write corresponding balanced chemical equations. |
Conc. HNO3, limewater.
Lime water, Magnesium ribbon, Universal indicator, lit candle. text book |
K.L.B. BOOK II P.126
K.L.B. BOOK II PP.139-140 |
|
2 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
Carbon monoxide lab preparation. Chemical properties of carbon monoxide. |
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
2 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbonates and hydrogen carbonates.
Heating carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
To write chemical equations for reactions of carbonates and hydrogen carbonates with acids. |
Discuss the observations above.
Write chemical equations for the reactions. |
text book
|
K.L.B. BOOK II
|
|
3 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Extraction of sodium carbonate from trona.
Solvay process of preparing sodium carbonate. |
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book
text book, chart |
K.L.B. BOOK II PP. 153-157
|
|
3 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
NITROGEN AND ITS COMPOUNDS |
Importance of carbon in nature.
& its
effects on the environment.
Introduction to Nitrogen - Properties and Occurrence |
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength. |
text book
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond |
K.L.B. BOOK II PP.157-158
KLB Secondary Chemistry Form 3, Pages 119 |
|
3 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
|
By the end of the
lesson, the learner
should be able to:
Describe isolation of nitrogen from air Explain fractional distillation of liquid air Set up apparatus for laboratory isolation Identify impurities removed during isolation |
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
|
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
|
KLB Secondary Chemistry Form 3, Pages 119-121
|
|
3 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
|
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
4 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
4 | 2-3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate Test physical and chemical properties Explain decomposition and oxidizing properties Describe uses of nitrogen(I) oxide Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ |
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air. |
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents |
KLB Secondary Chemistry Form 3, Pages 123-125
KLB Secondary Chemistry Form 3, Pages 125-127 |
|
4 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(IV) Oxide - Preparation and Properties
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid Prepare from thermal decomposition of nitrates Test properties including equilibrium with N₂O₄ Describe reactions and uses |
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
|
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
|
KLB Secondary Chemistry Form 3, Pages 127-131
|
|
4 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Comparison of Nitrogen Oxides and Environmental Effects
|
By the end of the
lesson, the learner
should be able to:
Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
|
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
|
KLB Secondary Chemistry Form 3, Pages 123-131
|
|
5 |
Midterm Exams |
|||||||
6 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Ammonia
|
By the end of the
lesson, the learner
should be able to:
Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle |
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
|
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
|
KLB Secondary Chemistry Form 3, Pages 131-134
|
|
6 | 2-3 |
NITROGEN AND ITS COMPOUNDS
|
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions |
By the end of the
lesson, the learner
should be able to:
Prepare aqueous ammonia solution Demonstrate high solubility using fountain experiment Explain alkaline properties of aqueous ammonia Write equations for ammonia in water Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺. |
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables |
KLB Secondary Chemistry Form 3, Pages 134-136
KLB Secondary Chemistry Form 3, Pages 136-138 |
|
6 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
|
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
|
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
|
KLB Secondary Chemistry Form 3, Pages 138-140
|
|
6 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Ammonia - The Haber Process
|
By the end of the
lesson, the learner
should be able to:
Describe raw materials and their sources Explain optimum conditions for ammonia synthesis Draw flow diagram of Haber process Explain economic considerations and catalyst use |
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
|
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
|
KLB Secondary Chemistry Form 3, Pages 140-141
|
|
7 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
|
By the end of the
lesson, the learner
should be able to:
List major uses of ammonia Explain importance as fertilizer Calculate nitrogen percentages in fertilizers Compare different nitrogenous fertilizers |
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
|
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
|
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
7 | 2-3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogenous Fertilizers - Types and Calculations
Laboratory Preparation of Nitric(V) Acid |
By the end of the
lesson, the learner
should be able to:
Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling |
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard. |
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 141-144
KLB Secondary Chemistry Form 3, Pages 144-145 |
|
7 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
|
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
|
KLB Secondary Chemistry Form 3, Pages 145-147
|
|
7 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Metals
|
By the end of the
lesson, the learner
should be able to:
Test reactions with various metals Explain absence of hydrogen gas production Observe formation of nitrogen oxides Write equations for metal-acid reactions |
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
|
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
|
KLB Secondary Chemistry Form 3, Pages 147-150
|
|
8 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
|
By the end of the
lesson, the learner
should be able to:
Test reactions with carbonates and hydrogen carbonates Test neutralization with metal hydroxides and oxides Identify products formed Write balanced chemical equations |
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
|
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 147-150
|
|
8 | 2-3 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates |
By the end of the
lesson, the learner
should be able to:
Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates. |
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets |
KLB Secondary Chemistry Form 3, Pages 150-151
KLB Secondary Chemistry Form 3, Pages 151 |
|
8 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
|
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
|
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
8 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Test for Nitrates - Brown Ring Test
|
By the end of the
lesson, the learner
should be able to:
Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
|
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
|
KLB Secondary Chemistry Form 3, Pages 153-154
|
|
9 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
|
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
9 | 2-3 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry |
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts. |
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
9 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
|
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
9 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Applications and Economic Importance
Chapter Review and Integration |
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
|
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets |
KLB Secondary Chemistry Form 3, Pages 119-157
|
Your Name Comes Here