If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 5 |
Quadratic Expressions and Equations
|
Completing squares
|
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expression by completing square method Apply completing square to complex expressions Transform expressions to vertex form |
Q/A on completing square basics
Discussions on advanced applications Solving complex expressions Demonstrations of vertex form transformation Explaining complete methodology |
Calculators, vertex form examples
|
KLB Mathematics Book Three Pg 3-4
|
|
1 | 6 |
Quadratic Expressions and Equations
|
Completing squares
|
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expression by completing square method Apply completing square to complex expressions Transform expressions to vertex form |
Q/A on completing square basics
Discussions on advanced applications Solving complex expressions Demonstrations of vertex form transformation Explaining complete methodology |
Calculators, vertex form examples
|
KLB Mathematics Book Three Pg 3-4
|
|
1 | 7 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by completing square
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by completing square Apply completing square method to equations Verify solutions by substitution |
Q/A on equation solving methods
Discussions on systematic solving approach Solving equations step-by-step Demonstrations of verification methods Explaining solution processes |
Calculators, equation solving guides
|
KLB Mathematics Book Three Pg 5-6
|
|
1 | 8 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by completing square
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by completing square Apply completing square method to equations Verify solutions by substitution |
Q/A on equation solving methods
Discussions on systematic solving approach Solving equations step-by-step Demonstrations of verification methods Explaining solution processes |
Calculators, equation solving guides
|
KLB Mathematics Book Three Pg 5-6
|
|
1 | 9 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by factorization
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by factorization Apply zero product property Choose appropriate factorization method |
Q/A on factorization techniques
Discussions on solving strategies Solving equations using factorization Demonstrations of zero product rule Explaining method selection |
Calculators, method selection charts
|
KLB Mathematics Book Three Pg 7
|
|
2 | 1 |
Quadratic Expressions and Equations
|
The quadratic formula
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions using the quadratic formula Apply formula to complex coefficients Interpret discriminant values |
Q/A on formula mastery
Discussions on discriminant meaning Solving complex equations Demonstrations of discriminant analysis Explaining nature of roots |
Calculators, discriminant interpretation guides
|
KLB Mathematics Book Three Pg 7-9
|
|
2 | 2 |
Quadratic Expressions and Equations
|
The quadratic formula
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions using the quadratic formula Apply formula to complex coefficients Interpret discriminant values |
Q/A on formula mastery
Discussions on discriminant meaning Solving complex equations Demonstrations of discriminant analysis Explaining nature of roots |
Calculators, discriminant interpretation guides
|
KLB Mathematics Book Three Pg 7-9
|
|
2 | 3 |
Quadratic Expressions and Equations
|
The quadratic formula
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions using the quadratic formula Apply formula to complex coefficients Interpret discriminant values |
Q/A on formula mastery
Discussions on discriminant meaning Solving complex equations Demonstrations of discriminant analysis Explaining nature of roots |
Calculators, discriminant interpretation guides
|
KLB Mathematics Book Three Pg 7-9
|
|
2 | 4 |
Quadratic Expressions and Equations
|
Formation of quadratic equations
|
By the end of the
lesson, the learner
should be able to:
Form a quadratic equation from word problem Create equations from given roots Apply sum and product of roots |
Q/A on roots and coefficients relationship
Discussions on equation formation Solving word problems leading to equations Demonstrations of equation creation Explaining formation processes |
Calculators, word problem templates
|
KLB Mathematics Book Three Pg 9-10
|
|
2 | 5 |
Quadratic Expressions and Equations
|
Formation of quadratic equations
|
By the end of the
lesson, the learner
should be able to:
Form a quadratic equation from word problem Create equations from given roots Apply sum and product of roots |
Q/A on roots and coefficients relationship
Discussions on equation formation Solving word problems leading to equations Demonstrations of equation creation Explaining formation processes |
Calculators, word problem templates
|
KLB Mathematics Book Three Pg 9-10
|
|
2 | 6 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
2 | 7 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
2 | 8 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
2 | 9 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
3 | 1 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph-equation relationships
Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 15-17
|
|
3 | 2 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph-equation relationships
Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 15-17
|
|
3 | 3 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph-equation relationships
Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 15-17
|
|
3 | 1-4 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph-equation relationships
Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 15-17
|
|
3 |
Level 1 exan |
|||||||
3 | 9 |
Quadratic Expressions and Equations
|
Graphical solutions of simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables for simultaneous equations Find the graphical solutions of simultaneous equations Solve systems involving quadratic and linear equations |
Q/A on simultaneous equation concepts
Discussions on intersection analysis Solving systems of equations Demonstrations of intersection finding Explaining solution interpretation |
Graph papers, calculators, intersection analysis guides
|
KLB Mathematics Book Three Pg 19-21
|
|
4 | 1 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 2 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 3 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 4 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 5 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 6 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 7 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
4 | 8 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
4 | 9 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
5 | 1 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 2 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 3 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 4 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 5 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 6 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 7 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 8 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
5 | 9 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
6 | 1 |
Matrices
|
Matrix multiplication (2×2 matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
|
KLB Mathematics Book Three Pg 176-179
|
|
6 | 2 |
Matrices
|
Matrix multiplication (2×2 matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
|
KLB Mathematics Book Three Pg 176-179
|
|
6 | 3 |
Matrices
|
Matrix multiplication (2×2 matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
|
KLB Mathematics Book Three Pg 176-179
|
|
6 | 4 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
6 | 5 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
6 | 6 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
6 | 7 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
6 | 8 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
6 | 8-9 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
7 |
Kcse trial exam |
|||||||
7 | 9 |
Matrices
|
Inverse of 2×2 matrices - practice
|
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
|
KLB Mathematics Book Three Pg 185-187
|
|
8 | 1 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 2 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 3 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 4 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 5 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 6 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 7 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 8 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
8 | 9 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
9 | 1 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
9 | 2 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
9 | 3 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
9 | 4 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
Your Name Comes Here