If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opening and marking of assignment |
|||||||
2 | 1-2 |
Matrices and Transformation
|
Matrices of Transformation
Identifying Common Transformation Matrices Finding the Matrix of a Transformation Using the Unit Square Method |
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations -Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images -Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -Pencils Exercise books -Manila paper -Ruler -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
2 | 3 |
Matrices and Transformation
|
Successive Transformations
Matrix Multiplication for Combined Transformations Single Matrix for Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
2 | 4 |
Matrices and Transformation
|
Inverse of a Transformation
Properties of Inverse Transformations |
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
2 | 5 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
2 | 6 |
Matrices and Transformation
|
Shear Transformations
Stretch Transformations |
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler -Rubber bands |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
2 | 7 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 1-2 |
Matrices and Transformation
Loci |
Isometric and Non-isometric Transformations
Introduction to Loci Basic Locus Concepts and Laws |
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems -Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type -Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Paper cutouts -Manila paper -Ruler -String -Chalk/markers Exercise books -Manila paper -String -Real objects |
KLB Secondary Mathematics Form 4, Pages 35-38
KLB Secondary Mathematics Form 4, Pages 73-75 |
|
3 | 3 |
Loci
|
Perpendicular Bisector Locus
|
By the end of the
lesson, the learner
should be able to:
-Define perpendicular bisector locus -Construct perpendicular bisector using compass and ruler -Prove that points on perpendicular bisector are equidistant from endpoints -Apply perpendicular bisector to solve problems |
-Construct perpendicular bisector on manila paper -Measure distances to verify equidistance property -Use folding method to find perpendicular bisector -Practice with different line segments |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
3 | 4 |
Loci
|
Properties and Applications of Perpendicular Bisector
Locus of Points at Fixed Distance from a Point |
By the end of the
lesson, the learner
should be able to:
-Understand perpendicular bisector in 3D space -Apply perpendicular bisector to find circumcenters -Solve practical problems using perpendicular bisector -Use perpendicular bisector in triangle constructions |
-Find circumcenter of triangle using perpendicular bisectors -Solve water pipe problems (equidistant from two points) -Apply to real-world location problems -Practice with various triangle types |
Exercise books
-Manila paper -Compass -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
3 | 5 |
Loci
|
Locus of Points at Fixed Distance from a Line
|
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
3 | 6 |
Loci
|
Angle Bisector Locus
Properties and Applications of Angle Bisector |
By the end of the
lesson, the learner
should be able to:
-Define angle bisector locus -Construct angle bisectors using compass and ruler -Prove equidistance property of angle bisector -Apply angle bisector to find incenters |
-Construct angle bisectors for various angles -Verify equidistance from angle arms -Find incenter of triangle using angle bisectors -Practice with acute, obtuse, and right angles |
Exercise books
-Manila paper -Compass -Protractor -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
3 | 7 |
Loci
|
Constant Angle Locus
|
By the end of the
lesson, the learner
should be able to:
-Understand constant angle locus concept -Construct constant angle loci using arc method -Apply circle theorems to constant angle problems -Solve problems involving angles in semicircles |
-Demonstrate constant angle using protractor -Construct arc passing through two points -Use angles in semicircle property -Practice with different angle measures |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 1-2 |
Loci
|
Advanced Constant Angle Constructions
Introduction to Intersecting Loci Intersecting Circles and Lines |
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving -Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement -Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Protractor -Ruler Exercise books -Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
KLB Secondary Mathematics Form 4, Pages 83-89 |
|
4 | 3 |
Loci
|
Triangle Centers Using Intersecting Loci
|
By the end of the
lesson, the learner
should be able to:
-Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems |
-Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
4 | 4 |
Loci
|
Complex Intersecting Loci Problems
Introduction to Loci of Inequalities |
By the end of the
lesson, the learner
should be able to:
-Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Real-world scenarios -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
4 | 5 |
Loci
|
Distance Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
4 | 6 |
Loci
|
Combined Inequality Loci
Advanced Inequality Applications |
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils -Real problem data |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
4 | 7 |
Loci
|
Introduction to Loci Involving Chords
|
By the end of the
lesson, the learner
should be able to:
-Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
5 | 1-2 |
Loci
|
Chord-Based Constructions
Advanced Chord Problems Integration of All Loci Types |
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions -Solve complex problems involving multiple chords -Apply power of point theorem -Find loci related to chord properties -Use chords in circle geometry proofs |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships -Apply intersecting chords theorem -Solve problems with chord-secant relationships -Find loci of points with equal power -Practice with tangent-chord angles |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
5 | 3 |
Differentiation
|
Introduction to Rate of Change
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of rate of change in daily life -Distinguish between average and instantaneous rates -Identify examples of changing quantities -Connect rate of change to gradient concepts |
-Discuss speed as rate of change of distance -Examine population growth rates -Analyze temperature change throughout the day -Connect to gradients of lines from coordinate geometry |
Exercise books
-Manila paper -Real-world examples -Graph examples |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
5 | 4 |
Differentiation
|
Average Rate of Change
Instantaneous Rate of Change |
By the end of the
lesson, the learner
should be able to:
-Calculate average rate of change between two points -Use formula: average rate = Δy/Δx -Apply to distance-time and other practical graphs -Understand limitations of average rate calculations |
-Calculate average speed between two time points -Find average rate of population change -Use coordinate points to find average rates -Compare average rates over different intervals |
Exercise books
-Manila paper -Calculators -Graph paper -Tangent demonstrations -Motion examples |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
5 | 5 |
Differentiation
|
Gradient of Curves at Points
|
By the end of the
lesson, the learner
should be able to:
-Find gradient of curve at specific points -Use tangent line method for gradient estimation -Apply limiting process to find exact gradients -Practice with various curve types |
-Draw tangent lines to curves on manila paper -Estimate gradients using tangent slopes -Use the limiting approach with chord sequences -Practice with parabolas and other curves |
Exercise books
-Manila paper -Rulers -Curve examples |
KLB Secondary Mathematics Form 4, Pages 178-182
|
|
5 | 6 |
Differentiation
|
Introduction to Delta Notation
The Limiting Process |
By the end of the
lesson, the learner
should be able to:
-Understand delta (Δ) notation for small changes -Use Δx and Δy for coordinate changes -Apply delta notation to rate calculations -Practice reading and writing delta expressions |
-Introduce delta as symbol for "change in" -Practice writing Δx, Δy, Δt expressions -Use delta notation in rate of change formulas -Apply to coordinate geometry problems |
Exercise books
-Manila paper -Delta notation examples -Symbol practice -Limit tables -Systematic examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
5 | 7 |
Differentiation
|
Introduction to Derivatives
|
By the end of the
lesson, the learner
should be able to:
-Define derivative as limit of rate of change -Use dy/dx notation for derivatives -Understand derivative as gradient function -Connect derivatives to tangent line slopes |
-Introduce derivative notation dy/dx -Show derivative as gradient of tangent -Practice derivative concept with simple functions -Connect to previous gradient work |
Exercise books
-Manila paper -Derivative notation -Function examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
6 | 1-2 |
Differentiation
|
Derivative of Linear Functions
Derivative of y = x^n (Basic Powers) Derivative of Constant Functions |
By the end of the
lesson, the learner
should be able to:
-Find derivatives of linear functions y = mx + c -Understand that derivative of linear function is constant -Apply to straight line gradient problems -Verify using limiting process -Find derivatives of power functions -Apply the rule d/dx(x^n) = nx^(n-1) -Practice with x², x³, x⁴, etc. -Verify using first principles for simple cases |
-Find derivative of y = 3x + 2 using definition -Show that derivative equals the gradient -Practice with various linear functions -Verify results using first principles -Derive d/dx(x²) = 2x using first principles -Apply power rule to various functions -Practice with x³, x⁴, x⁵ examples -Verify selected results using definition |
Exercise books
-Manila paper -Linear function examples -Verification methods Exercise books -Manila paper -Power rule examples -First principles verification -Constant function graphs -Geometric explanations |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
6 | 3 |
Differentiation
|
Derivative of Coefficient Functions
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of functions like y = ax^n -Apply constant multiple rule -Practice with various coefficient values -Combine coefficient and power rules |
-Find derivative of y = 5x³ -Apply rule d/dx(af(x)) = a·f'(x) -Practice with negative coefficients -Combine multiple rules systematically |
Exercise books
-Manila paper -Coefficient examples -Rule combinations |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
6 | 4 |
Differentiation
|
Derivative of Polynomial Functions
Applications to Tangent Lines |
By the end of the
lesson, the learner
should be able to:
-Find derivatives of polynomial functions -Apply term-by-term differentiation -Practice with various polynomial degrees -Verify results using first principles |
-Differentiate y = x³ + 2x² - 5x + 7 -Apply rule to each term separately -Practice with various polynomial types -Check results using definition for simple cases |
Exercise books
-Manila paper -Polynomial examples -Term-by-term method -Tangent line examples -Point-slope applications |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
6 | 5 |
Differentiation
|
Applications to Normal Lines
|
By the end of the
lesson, the learner
should be able to:
-Find equations of normal lines to curves -Use negative reciprocal of tangent gradient -Apply to perpendicular line problems -Practice with normal line calculations |
-Find normal to y = x² at point (2, 4) -Use negative reciprocal relationship -Apply perpendicular line concepts -Practice normal line equation finding |
Exercise books
-Manila paper -Normal line examples -Perpendicular concepts |
KLB Secondary Mathematics Form 4, Pages 187-189
|
|
6 | 6 |
Differentiation
|
Introduction to Stationary Points
Types of Stationary Points |
By the end of the
lesson, the learner
should be able to:
-Define stationary points as points where dy/dx = 0 -Identify different types of stationary points -Understand geometric meaning of zero gradient -Find stationary points by solving dy/dx = 0 |
-Show horizontal tangents at stationary points -Find stationary points of y = x² - 4x + 3 -Identify maximum, minimum, and inflection points -Practice finding where dy/dx = 0 |
Exercise books
-Manila paper -Curve sketches -Stationary point examples -Sign analysis charts -Classification examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
6 | 7 |
Differentiation
|
Finding and Classifying Stationary Points
|
By the end of the
lesson, the learner
should be able to:
-Solve dy/dx = 0 to find stationary points -Apply systematic classification method -Use organized approach for point analysis -Practice with polynomial functions |
-Work through complete stationary point analysis -Use systematic gradient sign testing -Create organized solution format -Practice with cubic and quartic functions |
Exercise books
-Manila paper -Systematic templates -Complete examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
7 | 1-2 |
Differentiation
|
Curve Sketching Using Derivatives
Introduction to Kinematics Applications Acceleration as Second Derivative |
By the end of the
lesson, the learner
should be able to:
-Use derivatives to sketch accurate curves -Identify key features: intercepts, stationary points -Apply systematic curve sketching method -Combine algebraic and graphical analysis -Apply derivatives to displacement-time relationships -Understand velocity as first derivative of displacement -Find velocity functions from displacement functions -Apply to motion problems |
-Sketch y = x³ - 3x² + 2 using derivatives -Find intercepts, stationary points, and behavior -Use systematic curve sketching approach -Verify sketches using derivative information -Find velocity from s = t³ - 2t² + 5t -Apply v = ds/dt to motion problems -Practice with various displacement functions -Connect to real-world motion scenarios |
Exercise books
-Manila paper -Curve sketching templates -Systematic method Exercise books -Manila paper -Motion examples -Kinematics applications -Second derivative examples -Motion analysis |
KLB Secondary Mathematics Form 4, Pages 195-197
KLB Secondary Mathematics Form 4, Pages 197-201 |
|
7 | 3 |
Differentiation
|
Motion Problems and Applications
|
By the end of the
lesson, the learner
should be able to:
-Solve complete motion analysis problems -Find displacement, velocity, acceleration relationships -Apply to real-world motion scenarios -Use derivatives for motion optimization |
-Analyze complete motion of falling object -Find when particle changes direction -Calculate maximum height in projectile motion -Apply to vehicle motion problems |
Exercise books
-Manila paper -Complete motion examples -Real scenarios |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
7 | 4 |
Differentiation
|
Introduction to Optimization
Geometric Optimization Problems |
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to find maximum and minimum values -Understand optimization in real-world contexts -Use calculus for practical optimization problems -Connect to business and engineering applications |
-Find maximum area of rectangle with fixed perimeter -Apply calculus to profit maximization -Use derivatives for cost minimization -Practice with geometric optimization |
Exercise books
-Manila paper -Optimization examples -Real applications -Geometric examples -Design applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
7 | 5 |
Differentiation
|
Business and Economic Applications
|
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to profit and cost functions -Find marginal cost and marginal revenue -Use calculus for business optimization -Apply to Kenyan business scenarios |
-Find maximum profit using calculus -Calculate marginal cost and revenue -Apply to agricultural and manufacturing examples -Use derivatives for business decision-making |
Exercise books
-Manila paper -Business examples -Economic applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
7 | 6 |
Differentiation
Matrices and Transformations |
Advanced Optimization Problems
Transformation on a Cartesian plane |
By the end of the
lesson, the learner
should be able to:
-Solve complex optimization with multiple constraints -Apply systematic optimization methodology -Use calculus for engineering applications -Practice with advanced real-world problems |
-Solve complex geometric optimization problems -Apply to engineering design scenarios -Use systematic optimization approach -Practice with multi-variable situations |
Exercise books
-Manila paper -Complex examples -Engineering applications Square boards -Peg boards -Graph papers -Mirrors -Rulers |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
7 | 7 |
Matrices and Transformations
|
Basic Transformation Matrices
Identification of transformation matrix Two Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Determine matrices for reflection in x-axis, y-axis, and y=x -Find matrices for 90°, 180°, 270° rotations about origin -Calculate translation using column vectors -Apply enlargement matrices with different scale factors |
-Step-by-step derivation of reflection matrices -Demonstration of rotation matrices using unit square -Working examples with translation vectors -Practice calculating images under each transformation -Group exercises on matrix identification |
Square boards
-Peg boards -Graph papers -Protractors -Calculators Graph papers -Exercise books -Matrix examples -Colored pencils -Rulers |
KLB Secondary Mathematics Form 4, Pages 1-16
|
|
8 | 1-2 |
Matrices and Transformations
|
Complex Successive Transformations
Single matrix of transformation for successive transformations Matrix Multiplication Properties Identity Matrix and Transformation Inverse of a matrix |
By the end of the
lesson, the learner
should be able to:
-Apply three or more transformations in sequence -Track changes through multiple transformation steps -Solve complex successive transformation problems -Understand cumulative effects -Define identity matrix and its properties -Understand that IA = AI = A for any matrix A -Identify identity transformation (leaves objects unchanged) -Apply identity matrix in transformation problems |
-Extended examples with 3-4 transformations -Students work through complex examples step by step -Discussion on tracking coordinate changes -Problem-solving with mixed transformation types -Practice exercises Ex 1.4 from textbook -Introduction to identity matrix concept -Verification through matrix multiplication examples -Demonstration that identity transformation preserves all properties -Practice with identity matrix calculations -Discussion on identity element in mathematics |
Square boards
-Graph papers -Calculators -Colored pencils Calculators -Matrix multiplication charts -Exercise books -Matrix worksheets -Formula sheets Calculators -Graph papers -Exercise books -Matrix examples -Formula sheets |
KLB Secondary Mathematics Form 4, Pages 16-24
KLB Secondary Mathematics Form 4, Pages 13-14, 22-24 |
|
8 | 3 |
Matrices and Transformations
|
Determinant and Area Scale Factor
Area scale factor and determinant relationship |
By the end of the
lesson, the learner
should be able to:
-Calculate determinant of 2×2 matrix -Understand relationship between determinant and area scaling -Apply formula: area scale factor = |
det(matrix)
|
-Solve problems involving area changes under transformations
Calculators -Graph papers -Formula sheets -Area calculation tools |
-Determinant calculation practice -Demonstration using shapes with known areas -Establishing that area scale factor = |
|
8 | 4 |
Matrices and Transformations
|
Shear Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Find matrices for shear parallel to x-axis and y-axis -Calculate images under shear transformations -Understand that shear preserves area but changes shape |
-Physical demonstration using flexible materials -Derivation of shear transformation matrices -Drawing effects of shear on rectangles and parallelograms -Verification that area is preserved under shear -Practice exercises Ex 1.6 |
Square boards
-Flexible materials -Graph papers -Rulers -Calculators |
KLB Secondary Mathematics Form 4, Pages 10-13, 28-34
|
|
8 | 5 |
Matrices and Transformations
Integration |
Stretch Transformation and Review
Introduction to Reverse Differentiation |
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and its matrices -Calculate effect of stretch on areas and lengths -Compare and contrast shear and stretch -Review all transformation types and their properties |
-Demonstration using elastic materials -Finding matrices for stretch in x and y directions -Comparison table: isometric vs non-isometric transformations -Comprehensive review of all transformation types -Problem-solving session covering entire unit |
Graph papers
-Elastic materials -Calculators -Comparison charts -Review materials -Differentiation charts -Exercise books -Function examples |
KLB Secondary Mathematics Form 4, Pages 28-38
|
|
8 | 6 |
Integration
|
Basic Integration Rules - Power Functions
Integration of Polynomial Functions Finding Particular Solutions |
By the end of the
lesson, the learner
should be able to:
-Apply power rule for integration: ∫xⁿ dx = xⁿ⁺¹/(n+1) + c -Understand the constant of integration and why it's necessary -Integrate simple power functions where n ≠ -1 -Practice with positive, negative, and fractional powers |
-Derivation of power rule through reverse differentiation -Multiple examples with different values of n -Explanation of arbitrary constant using family of curves -Practice exercises with various power functions -Common mistakes discussion and correction |
Calculators
-Graph papers -Power rule charts -Exercise books -Algebraic worksheets -Polynomial examples Graph papers -Calculators -Curve examples |
KLB Secondary Mathematics Form 4, Pages 223-225
|
|
8 | 7 |
Integration
|
Introduction to Definite Integrals
Evaluating Definite Integrals Area Under Curves - Single Functions Areas Below X-axis and Mixed Regions Area Between Two Curves |
By the end of the
lesson, the learner
should be able to:
-Define definite integrals using limit notation -Understand the difference between definite and indefinite integrals -Learn proper notation: ∫ₐᵇ f(x)dx -Understand geometric meaning as area under curve |
-Introduction to definite integral concept and notation -Geometric interpretation using simple curves -Comparison between ∫f(x)dx and ∫ₐᵇf(x)dx -Discussion on limits of integration -Basic examples with simple functions |
Graph papers
-Geometric models -Integration notation charts -Calculators Calculators -Step-by-step worksheets -Exercise books -Evaluation charts -Curve sketching tools -Colored pencils -Area grids -Curve examples -Colored materials -Equation solving aids |
KLB Secondary Mathematics Form 4, Pages 226-228
|
|
9 |
End year exams and closing |
Your Name Comes Here