If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Reporting and Revision of Cat 1 exams |
|||||||
2 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Introduction to Nitrogen - Properties and Occurrence
Isolation of Nitrogen from Air - Industrial and Laboratory Methods Laboratory Preparation of Nitrogen Gas |
By the end of the
lesson, the learner
should be able to:
Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength.
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating. |
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon |
KLB Secondary Chemistry Form 3, Pages 119
KLB Secondary Chemistry Form 3, Pages 121-123 |
|
2 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints |
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
2 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ |
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
|
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials |
KLB Secondary Chemistry Form 3, Pages 125-127
|
|
2 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Comparison of Nitrogen Oxides and Environmental Effects
|
By the end of the
lesson, the learner
should be able to:
Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
|
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
|
KLB Secondary Chemistry Form 3, Pages 123-131
|
|
3 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility Reactions of Aqueous Ammonia with Metal Ions |
By the end of the
lesson, the learner
should be able to:
Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺. |
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables |
KLB Secondary Chemistry Form 3, Pages 131-134
KLB Secondary Chemistry Form 3, Pages 136-138 |
|
3 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process |
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
|
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets |
KLB Secondary Chemistry Form 3, Pages 138-140
|
|
3 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations |
By the end of the
lesson, the learner
should be able to:
List major uses of ammonia Explain importance as fertilizer Calculate nitrogen percentages in fertilizers Compare different nitrogenous fertilizers |
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
|
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data |
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
3 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling |
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
|
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 144-145
|
|
4 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides |
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency Test reactions with carbonates and hydrogen carbonates Test neutralization with metal hydroxides and oxides Identify products formed Write balanced chemical equations |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations. |
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes |
KLB Secondary Chemistry Form 3, Pages 145-147
KLB Secondary Chemistry Form 3, Pages 147-150 |
|
4 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates |
By the end of the
lesson, the learner
should be able to:
Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation |
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
|
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets |
KLB Secondary Chemistry Form 3, Pages 150-151
|
|
4 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
|
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
|
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
4 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds |
By the end of the
lesson, the learner
should be able to:
Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
|
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations |
KLB Secondary Chemistry Form 3, Pages 153-154
|
|
5 |
CAT 2 EAMS |
|||||||
6 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry Laboratory Practical Assessment - Nitrogen Compounds |
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions. |
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
6 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Applications and Economic Importance
Chapter Review and Integration |
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
|
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
6 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Extraction of Sulphur
Allotropes of Sulphur Physical Properties of Sulphur - Solubility |
By the end of the
lesson, the learner
should be able to:
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process. |
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
|
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure |
KLB Secondary Chemistry Form 4, Pages 160-161
|
|
6 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements Chemical Properties of Sulphur - Reactions with Acids |
By the end of the
lesson, the learner
should be able to:
Investigate the effect of heat on sulphur. Describe changes in color and viscosity of molten sulphur. Explain the molecular changes occurring during heating. Identify "flowers of sulphur". |
Practical work: Experiment 2(b) - Heating sulphur and observing changes. Observation: Color changes from yellow to amber to reddish-brown to black. Testing viscosity by inverting test tube. Demonstration: Sublimation of sulphur vapour. Discussion: Breaking of S8 rings to form long chains.
|
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 4, Pages 164-165
|
|
7 | 1-2 |
SULPHUR AND ITS COMPOUNDS
|
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide Physical and Chemical Properties of Sulphur(IV) Oxide Bleaching Action of Sulphur(IV) Oxide Reducing Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides. Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. |
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes. |
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes |
KLB Secondary Chemistry Form 4, Pages 168-170
KLB Secondary Chemistry Form 4, Pages 173 |
|
7 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Oxidising Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO |
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
|
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
|
KLB Secondary Chemistry Form 4, Pages 176-177
|
|
7 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Test for Sulphate and Sulphite Ions & Uses of SO2
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process |
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
|
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations |
KLB Secondary Chemistry Form 4, Pages 178-179
|
|
7 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
|
By the end of the
lesson, the learner
should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid. |
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
|
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
|
KLB Secondary Chemistry Form 4, Pages 181-183
|
|
8 | 1-2 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions Reactions of Dilute Sulphuric(VI) Acid - With Metals Reactions of Dilute Sulphuric(VI) Acid - With Carbonates |
By the end of the
lesson, the learner
should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions. Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series. |
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations. |
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes |
KLB Secondary Chemistry Form 4, Pages 183-184
KLB Secondary Chemistry Form 4, Pages 184-185 |
|
8 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. |
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
|
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
|
KLB Secondary Chemistry Form 4, Pages 186-187
|
|
8 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions. |
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
|
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers |
KLB Secondary Chemistry Form 4, Pages 187-188
|
|
8 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Pollution Effects and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
|
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
|
KLB Secondary Chemistry Form 4, Pages 190-194
|
|
9 |
TERM 1 CAT1 2026 EXAMS AND CLOSURE |
Your Name Comes Here