If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
SALTS
|
Types of salts.
|
By the end of the
lesson, the learner
should be able to:
Define a salt. Describe various types of salts and give several examples in each case. |
Descriptive approach. Teacher exposes new concepts.
|
text book
|
K.L.B. BOOK II P. 91
|
|
1 | 2-3 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
1 | 4 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
2 | 1 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
2 | 2-3 |
SALTS
|
Direct synthesis of a salts.
Ionic equations. |
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. Q/A: Ions present in given reactants. Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
Iron,
Sulphur PbNO3, MgSO4 solutions. |
K.L.B. BOOK II P. 104
|
|
2 | 4 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
3 | 1 |
SALTS
|
Effects of heat on carbonates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
|
K.L.B. BOOK II PP. 108-109
|
|
3 | 2-3 |
SALTS
|
Effects of heat on carbonates.
Effects of heat on nitrates. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. Group experiments- To investigate effects of heat on various metal nitrates. Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
Common metal nitrates. |
K.L.B. BOOK II PP. 108-109
K.L.B. BOOK II PP. 110-111 |
|
3 | 4 |
SALTS
|
Effects of heat on sulphates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
4 | 1 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
|
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. |
|
K.L.B. BOOK II P. 114
|
|
4 | 2-3 |
SALTS
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES. |
Uses of salts.
Molten electrolytes. |
By the end of the
lesson, the learner
should be able to:
To state uses of salts To test for electrical conductivities molten electrolytes. |
Teacher elucidates uses of salts.
Group experiments- to identify electrolytes in molten form. Explain the difference in molten electrolytes. |
Molten candle wax Sugar Sulphur Lead oxide. |
K.L.B. BOOK II P. 114
K.L.B. BOOK IIPP. 120-121 |
|
4 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Molten electrolytes.
|
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities molten electrolytes. |
Group experiments- to identify electrolytes in molten form.
Explain the difference in molten electrolytes. |
Molten candle wax
Sugar Sulphur Lead oxide. |
K.L.B. BOOK IIPP. 120-121
|
|
5 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrolysis.
|
By the end of the
lesson, the learner
should be able to:
To define electrolysis To describe the process of electrolysis in terms of charge movement. |
Descriptive approach punctuated with Q/A.
|
|
K.L.B. BOOK II
|
|
5 | 2-3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Aqueous electrolytes.
Electrodes.
|
By the end of the
lesson, the learner
should be able to:
To define an electrolyte To test for electrical conductivities of electrodes. |
To investigate chemical effect of an electric current.
Classify the solutions as electrolyte or non -electrolytes. Discuss the electrical properties of the solutions. |
Graphite electrodes
Battery Various aqueous solutions switch bulb. |
K.L.B. BOOK II PP.122-123
|
|
5 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Reaction on electrodes.
|
By the end of the
lesson, the learner
should be able to:
To describe half- equation reactions at the cathode and anode |
To demonstrate ?Electrolysis of molten lead (II) bromide
Observe colour changes Explanation of half-equations and reactions at the electrodes. |
Graphite electrodes
Battery Various aqueous solutions switch. |
K.L.B. BOOK II PP.126-127
|
|
6 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Binary electrolyte.
|
By the end of the
lesson, the learner
should be able to:
To define a binary electrolyte. To state the products of a binary electrolyte. |
Completing a table of electrolysis of binary electrolytes.
|
text book
|
K.L.B. BOOK II P.127
|
|
6 | 2-3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Binary electrolyte.
Application of electrolysis. |
By the end of the
lesson, the learner
should be able to:
To define a binary electrolyte. To state the products of a binary electrolyte. To state application of electrolysis. |
Completing a table of electrolysis of binary electrolytes.
Discussion and explanations. |
text book
|
K.L.B. BOOK II P.127
K.L.B. BOOK II P. 128 |
|
6 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electroplating.
|
By the end of the
lesson, the learner
should be able to:
To describe electroplating process. |
Experiment- Left overnight.
Electroplating an iron nail with silver nitrate/ copper sulphate. Brief discussion. |
Silver nitrate
Iron nail Complete circuit battery. |
K.L.B. BOOK II PP. 129-30
|
|
7 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
|
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. |
text book
|
K.L.B. BOOK II PP. 131-133
|
|
7 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon |
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. Discuss physical and chemical properties of diamond, graphite and amorphous carbon. Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. |
text book
Charcoal, graphite. |
K.L.B. BOOK II PP. 131-133
K.L.B. BOOK II pp 134 |
|
7 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Burning carbon and oxygen.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with oxygen. |
Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater.
|
Carbon, limewater, tube, limewater stand& Bunsen burner.
|
K.L.B. BOOK II PP. 134-135
|
Your Name Comes Here