If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
GROWTH & DEVELOPMENT.
|
Growth hormones.
Apical dominance. |
By the end of the
lesson, the learner
should be able to:
To explain role of hormones in growth of plants. |
Discuss the role of IAA, gibberellins, cytokinins, and abscisic acid e.t.c, in plant growth.
|
text book
Shoot with lateral growth. |
KLB BK III. P. 147 CERTIFICATE PG 190
|
|
2 | 2 |
GROWTH & DEVELOPMENT.
|
Growth and development in insects.
|
By the end of the
lesson, the learner
should be able to:
To differentiate between complete and incomplete metamorphosis. |
Q/A: Features of complete and incomplete metamorphosis of insects.
|
chart
|
KLB BK III. PP.148-14.9 CERTIFICATE PG 194
|
|
2 | 3-4 |
GROWTH & DEVELOPMENT.
GENETICS |
Role of hormones in insect growth.
Introduction to Genetics and Variation Observable Variations in Human Beings Discontinuous and Continuous Variation |
By the end of the
lesson, the learner
should be able to:
To identify hormones that promotes insect growth. Observe and record variations in tongue rolling, fingerprints and height. Distinguish between different types of variations. Create data tables. |
Exposition and explanations.
Practical activity on tongue rolling. Fingerprint examination using ink pads. Height measurement and data recording. |
text book
Textbook, chalkboard, chalk Ink pad, plain paper, metre rule, exercise books Graph paper, rulers, height data from previous lesson, textbook |
KLB BK III. PP. 148-149. CERTIFICATE PG 199
KLB Secondary Biology Form 4, Pages 2-3 |
|
2 | 5 |
GENETICS
|
Causes of Variation
|
By the end of the
lesson, the learner
should be able to:
Explain genetic and environmental causes of variation. Describe role of meiosis, fertilization and mutations in creating variation. |
Exposition on sources of variation. Discussion on independent assortment during meiosis. Examples of environmental effects on phenotypes.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 4-5
|
|
3 | 1 |
GENETICS
|
Chromosome Structure
Chromosome Behaviour During Mitosis |
By the end of the
lesson, the learner
should be able to:
Describe the structure of chromosomes. Define chromatids, centromere and genes. Explain homologous chromosomes and chromosome numbers. |
Drawing labeled chromosome diagrams on chalkboard. Discussion on chromosome pairs in different species. Student drawing exercises.
|
Textbook, chalkboard, chalk, exercise books, pencils
Colored threads (6cm and 3cm), scissors, manila paper, string for tying knots |
KLB Secondary Biology Form 4, Pages 5-6
|
|
3 | 2 |
GENETICS
|
Chromosome Behaviour During Meiosis
|
By the end of the
lesson, the learner
should be able to:
Describe chromosome behaviour during meiosis. Explain crossing over and reduction division. Compare mitosis and meiosis. |
Continuation of chromosome modeling using threads. Demonstration of reduction division. Discussion on gamete formation.
|
Colored threads, manila paper, textbook
|
KLB Secondary Biology Form 4, Pages 8-9
|
|
3 | 3-4 |
GENETICS
|
DNA Structure and Replication
DNA and Protein Synthesis Mendel's Experiments and First Law |
By the end of the
lesson, the learner
should be able to:
Describe the structure of DNA. Explain DNA replication process. Understand the role of DNA in heredity. Describe Mendel's experiments with garden peas. State Mendel's first law of inheritance. Explain reasons for Mendel's success. |
Drawing DNA double helix on chalkboard. Step-by-step explanation of replication. Discussion on base pairing rules.
Q/A on Mendel's work. Detailed discussion of pea plant experiments using chalkboard diagrams. Analysis of F1 and F2 results. |
Textbook, chalkboard, chalk, exercise books
Textbook, chalkboard, chalk |
KLB Secondary Biology Form 4, Pages 10-12
KLB Secondary Biology Form 4, Pages 13-15 |
|
3 | 5 |
GENETICS
|
Mendel's Experiments and First Law
|
By the end of the
lesson, the learner
should be able to:
Describe Mendel's experiments with garden peas. State Mendel's first law of inheritance. Explain reasons for Mendel's success. |
Q/A on Mendel's work. Detailed discussion of pea plant experiments using chalkboard diagrams. Analysis of F1 and F2 results.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 13-15
|
|
4 | 1 |
GENETICS
|
Monohybrid Inheritance Concepts
|
By the end of the
lesson, the learner
should be able to:
Define monohybrid inheritance, genotype, phenotype. Distinguish between dominant and recessive genes. Explain homozygous and heterozygous conditions. |
Exposition on genetic terminology. Practice using genetic symbols on chalkboard. Discussion on gene expression patterns.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 15-17
|
|
4 | 2 |
GENETICS
|
Genetic Crosses and Punnet Squares
|
By the end of the
lesson, the learner
should be able to:
Draw genetic cross diagrams. Use punnet squares to show genetic crosses. Predict offspring genotypes and phenotypes. |
Step-by-step construction of genetic crosses on chalkboard. Practice with punnet squares. Student exercises on genetic problems.
|
Textbook, chalkboard, chalk, exercise books, pencils
|
KLB Secondary Biology Form 4, Pages 17-18
|
|
4 | 3-4 |
GENETICS
|
Probability in Inheritance
Modeling Random Gamete Fusion |
By the end of the
lesson, the learner
should be able to:
Explain probability in genetic inheritance. Calculate phenotypic and genotypic ratios. Demonstrate random events using coin tossing. Demonstrate random fusion of gametes. Use simple materials to model inheritance. Analyze experimental vs expected results. |
Mathematical analysis of genetic ratios. Coin tossing experiment to demonstrate probability. Statistical interpretation of results.
Practical activity using different colored beans to represent gametes. Data collection and analysis. Discussion on sample size effects. |
Coins, exercise books for recording, calculators (if available), textbook
Different colored beans (or maize grains), small containers, exercise books |
KLB Secondary Biology Form 4, Pages 18-19
KLB Secondary Biology Form 4, Pages 19-20 |
|
5 |
MIDTERM EXAMS |
|||||||
6 | 1 |
GENETICS
|
Complete Dominance Problems
|
By the end of the
lesson, the learner
should be able to:
Solve genetic problems involving complete dominance. Analyze inheritance patterns in garden peas. Practice genetic calculations. |
Worked examples of genetic problems on chalkboard. Practice sessions with various characteristics. Group problem-solving.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 20-21
|
|
6 | 2 |
GENETICS
|
Incomplete Dominance
|
By the end of the
lesson, the learner
should be able to:
Define incomplete dominance. Analyze inheritance in four o'clock plants. Compare with complete dominance patterns. Draw genetic crosses showing blending. |
Exposition on incomplete dominance using chalkboard diagrams. Genetic crosses showing blending inheritance. Practice problems with flower colors.
|
Textbook, chalkboard, chalk, colored chalk (if available)
|
KLB Secondary Biology Form 4, Pages 22-24
|
|
6 | 3-4 |
GENETICS
|
ABO Blood Group System
Rhesus Factor and Unknown Genotypes |
By the end of the
lesson, the learner
should be able to:
Explain multiple alleles concept. Describe ABO blood group inheritance. Understand co-dominance in blood groups. Solve blood group problems. Describe Rhesus factor genetics. Explain test cross and back cross methods. Use selfing to determine genotypes. |
Detailed explanation of blood group genetics on chalkboard. Genetic crosses involving blood group inheritance. Practice problems and paternity cases.
Exposition on Rh factor inheritance using chalkboard. Demonstration of test cross technique. Practice problems on genotype determination. |
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 24-25
KLB Secondary Biology Form 4, Pages 25-26 |
|
6 | 5 |
GENETICS
|
Rhesus Factor and Unknown Genotypes
|
By the end of the
lesson, the learner
should be able to:
Describe Rhesus factor genetics. Explain test cross and back cross methods. Use selfing to determine genotypes. |
Exposition on Rh factor inheritance using chalkboard. Demonstration of test cross technique. Practice problems on genotype determination.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 25-26
|
|
7 | 1 |
GENETICS
|
Sex Determination
|
By the end of the
lesson, the learner
should be able to:
Describe sex determination in humans and other animals. Explain XX/XY sex determination systems. Calculate probability of male/female offspring. |
Exposition on sex chromosomes using chalkboard diagrams. Genetic crosses for sex determination. Comparison with other animals.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 26-27
|
|
7 | 2 |
GENETICS
|
Gene Linkage
|
By the end of the
lesson, the learner
should be able to:
Define gene linkage and linkage groups. Explain inheritance of linked genes. Understand why some genes are inherited together. |
Exposition on linked genes using simple diagrams. Examples from fruit fly genetics drawn on chalkboard. Discussion on chromosome maps.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 27-28
|
|
7 | 3-4 |
GENETICS
|
Sex-linked Inheritance - Color Blindness
|
By the end of the
lesson, the learner
should be able to:
Describe sex-linked inheritance patterns. Explain color blindness inheritance. Construct and analyze pedigree charts. |
Detailed exposition on X-linked inheritance using chalkboard. Genetic crosses for color blindness. Drawing simple pedigree charts.
|
Textbook, chalkboard, chalk, exercise books, rulers
|
KLB Secondary Biology Form 4, Pages 28-30
|
|
7 | 5 |
GENETICS
|
Sex-linked Inheritance - Haemophilia
|
By the end of the
lesson, the learner
should be able to:
Explain haemophilia inheritance. Understand carrier females and affected males. Analyze inheritance through generations. |
Exposition on haemophilia genetics. Drawing inheritance patterns on chalkboard. Practice with pedigree construction and analysis.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 30-31
|
|
8 | 1 |
GENETICS
|
Crossing Over and Recombination
|
By the end of the
lesson, the learner
should be able to:
Explain crossing over during meiosis. Understand how crossing over affects linkage. Describe formation of new gene combinations. |
Detailed explanation of crossing over using simple diagrams. Examples of recombinant offspring drawn on chalkboard. Discussion on genetic variation.
|
Textbook, chalkboard, chalk, colored chalk
|
KLB Secondary Biology Form 4, Page 31
|
|
8 | 2 |
GENETICS
|
Chromosomal Mutations - Non-disjunction
|
By the end of the
lesson, the learner
should be able to:
Define chromosomal mutations. Explain non-disjunction during meiosis. Describe Down's syndrome and other chromosome disorders. |
Exposition on non-disjunction using chalkboard diagrams. Drawing normal vs abnormal chromosome sets. Discussion on genetic disorders.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 32-35
|
|
8 | 3-4 |
GENETICS
|
Chromosomal Mutations - Polyploidy
|
By the end of the
lesson, the learner
should be able to:
Describe structural chromosome changes. Explain polyploidy in plants. Understand chromosome number variations. |
Exposition on chromosome number changes. Examples of polyploidy in agriculture using chalkboard. Discussion on plant breeding applications.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 35-36
|
|
8 | 5 |
GENETICS
|
Gene Mutations
|
By the end of the
lesson, the learner
should be able to:
Define gene mutations. Describe insertion, deletion, substitution and inversion. Explain effects on protein synthesis using analogies. |
Detailed exposition on point mutations using simple examples. Use SMS text analogies for mutations. Discussion on protein changes.
|
Textbook, chalkboard, chalk, simple text examples
|
KLB Secondary Biology Form 4, Pages 36-38
|
|
9 | 1 |
GENETICS
|
Genetic Disorders - Albinism
|
By the end of the
lesson, the learner
should be able to:
Describe albinism inheritance. Explain enzyme deficiency in albinism. Calculate inheritance probabilities. Draw genetic crosses. |
Case study of albinism using chalkboard diagrams. Genetic crosses for albinism inheritance. Discussion on carrier parents and affected children.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 38-40
|
|
9 | 2 |
GENETICS
|
Genetic Disorders - Sickle Cell Anaemia
|
By the end of the
lesson, the learner
should be able to:
Describe sickle cell anaemia inheritance. Explain hemoglobin differences. Understand sickle cell trait vs disease. |
Exposition on sickle cell genetics using diagrams. Comparison of normal and sickle cell hemoglobin. Genetic crosses and probabilities.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 40-42
|
|
9 | 3-4 |
GENETICS
|
Environmental Effects on Gene Expression
|
By the end of the
lesson, the learner
should be able to:
Explain gene-environment interactions. Describe phenotypic plasticity. Understand limitations of genetic determinism. |
Discussion on environmental influences using local examples. Plant growth under different conditions. Twin studies and environmental factors.
|
Textbook, local plant examples, chalkboard
|
KLB Secondary Biology Form 4, Pages 42-43
|
|
9 | 5 |
GENETICS
|
Applications of Genetics
|
By the end of the
lesson, the learner
should be able to:
Identify applications in plant and animal breeding. Explain genetic counselling. Understand blood transfusion genetics. Introduce genetic engineering basics. |
Exposition on practical genetics applications. Local examples of plant breeding. Discussion on genetic counselling process and medical applications.
|
Textbook, local breeding examples, chalkboard
|
KLB Secondary Biology Form 4, Pages 43-49
|
|
10 |
END TERM EXAMS AND CLOSING |
Your Name Comes Here