Home






SCHEME OF WORK
Biology
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Revision of End Term 2 Exam

2-3

Practical Activities

4 1
ECOLOGY
Ecological Pyramids - Introduction
By the end of the lesson, the learner should be able to:
Define ecological pyramids. Distinguish types of ecological pyramids. Explain pyramid of numbers concept.
Teacher exposition of ecological pyramids as graphical representations. Discussion of pyramid types - numbers, biomass, energy. Study of pyramid of numbers using Fig 2.6.
Charts - Fig 2.6 pyramid of numbers, Different pyramid types
Certificate Biology Form 3, Pages 47-49
4 2-3
ECOLOGY
Pyramid of Numbers and Biomass
By the end of the lesson, the learner should be able to:
Construct pyramids of numbers from data. Explain inverted pyramids. Define and construct pyramid of biomass.
Practice constructing normal and inverted pyramids of numbers. Discussion of when inverted pyramids occur (parasites, large trees). Study of biomass calculation and pyramid construction.
Data sets for pyramid construction, Calculators, Graph paper
Certificate Biology Form 3, Pages 47-50
4 4
ECOLOGY
Interspecific Relationships - Predation
By the end of the lesson, the learner should be able to:
Define predator-prey relationships. Describe predator and prey adaptations. Give examples of predation in different habitats.
Detailed discussion of predation as feeding relationship. Study of predator adaptations (speed, senses, hunting strategies). Q/A: Prey defense mechanisms (camouflage, mimicry, protective covering).
Charts - Predator-prey examples, Adaptation illustrations
Certificate Biology Form 3, Pages 50-52
4 5
ECOLOGY
Parasitism - Types and Adaptations
By the end of the lesson, the learner should be able to:
Define parasitism and distinguish parasite types. Explain endoparasites and ectoparasites. Describe parasitic adaptations.
Discussion of parasitism as harmful feeding relationship. Study of endoparasites (tapeworms, malaria parasites) vs ectoparasites (ticks, fleas). Detailed analysis of structural and physiological adaptations.
Charts - Parasite examples, Adaptation diagrams, Life cycle illustrations
Certificate Biology Form 3, Pages 52-57
5 1
ECOLOGY
Saprophytism and Economic Importance
By the end of the lesson, the learner should be able to:
Define saprophytism and role of decomposers. Explain economic importance of saprophytes. Describe harmful effects of saprophytes.
Discussion of saprophytes as decomposers. Economic benefits: recycling, soil fertility, antibiotics, fermentation. Harmful effects: food decay, food poisoning. Q/A: Useful vs harmful saprophytic activities.
Charts - Decomposition process, Examples of useful and harmful saprophytes
Certificate Biology Form 3, Pages 57-60
5 2-3
ECOLOGY
Mutualism and Symbiosis
By the end of the lesson, the learner should be able to:
Define mutualism and symbiosis. Give examples of mutually beneficial relationships. Explain lichens, mycorrhiza, and nitrogen-fixing bacteria.
Study of mutualistic relationships with examples: lichens (algae-fungi), mycorrhiza (fungi-tree roots), nitrogen-fixing bacteria (Rhizobium-legumes). Q/A: Benefits to both partners in each relationship.
Charts - Fig 2.8 lichens, Fig 2.9 root nodules, Symbiotic relationship examples
Certificate Biology Form 3, Pages 60-63
5 4
ECOLOGY
Commensalism
By the end of the lesson, the learner should be able to:
Define commensalism and give examples. Distinguish commensalism from other relationships. Analyze one-sided beneficial relationships.
Discussion of commensalism as one-sided benefit. Examples: ox-pecker birds and buffalo, cattle egrets and grazing animals, epiphytic plants on trees. Q/A: Why host doesn't benefit or suffer.
Charts - Commensalism examples, Epiphyte illustrations
Certificate Biology Form 3, Pages 63-64
5 5
ECOLOGY
Population Studies - Introduction
By the end of the lesson, the learner should be able to:
Define population and population density. Explain factors affecting population size. Describe carrying capacity concept.
Teacher exposition of population definitions. Discussion of biological factors: birth rate, death rate, sex ratio. Q/A: Environmental factors affecting population growth.
Charts - Population definitions, Factors affecting population
Certificate Biology Form 3, Pages 60-61
6 1
ECOLOGY
Population Estimation Methods - Direct Counting
By the end of the lesson, the learner should be able to:
Describe direct counting methods. Explain when direct counting is suitable. Practice population estimation calculations.
Discussion of direct counting for small populations and large slow-moving animals. Examples: tree counting, aerial surveys. Practice with simple population counts and density calculations.
Calculators, Sample area measurements, Population data sets
Certificate Biology Form 3, Pages 61-62
6 2-3
ECOLOGY
Capture-Mark-Release-Recapture Method
By the end of the lesson, the learner should be able to:
Explain the capture-recapture method. Apply the capture-recapture formula. Identify sources of error in the method.
Detailed study of capture-recapture method for mobile animals. Practice using the formula: P = (M × R)/m. Discussion of assumptions and sources of error.
Calculators, Sample data for calculations, Formula charts
Certificate Biology Form 3, Pages 61-62
6 4
ECOLOGY
Quadrat and Transect Methods
By the end of the lesson, the learner should be able to:
Describe quadrat sampling method. Explain line and belt transect techniques. Practice population estimation using sampling.
Study of quadrat method for plants and small animals using Fig 2.12. Discussion of line transects for distribution patterns. Practice calculations using sampling formulas.
Quadrats (if available), Measuring tapes, Sample area data, Calculators
Certificate Biology Form 3, Pages 62-64
6 5
ECOLOGY
Plant Adaptations - Xerophytes
By the end of the lesson, the learner should be able to:
Define xerophytes and their habitat conditions. Describe structural adaptations for water conservation. Explain physiological adaptations of desert plants.
Study of xerophyte adaptations using Fig 2.14. Discussion of modified leaves, water storage, extensive roots, waxy cuticles. Q/A: Stomatal adaptations and reduced transpiration.
Charts - Fig 2.14 xerophyte examples, Cactus specimens (if available)
Certificate Biology Form 3, Pages 64-66
7 1
ECOLOGY
Plant Adaptations - Hydrophytes
By the end of the lesson, the learner should be able to:
Define hydrophytes and aquatic conditions. Describe adaptations to aquatic environments. Explain buoyancy and gaseous exchange adaptations.
Study of hydrophyte adaptations using Fig 2.15. Discussion of aerenchyma tissue, stomatal distribution, reduced xylem. Q/A: Adaptations to low light and oxygen levels in water.
Charts - Fig 2.15 aquatic plants, Water plant specimens (if available)
Certificate Biology Form 3, Pages 66-68
7 2
ECOLOGY
Plant Adaptations - Halophytes and Mesophytes
By the end of the lesson, the learner should be able to:
Define halophytes and saline habitat adaptations. Describe mesophyte characteristics. Compare different plant adaptation types.
Study of mangrove adaptations using Fig 2.16. Discussion of salt excretion, pneumatophores, viviparous seeds. Q/A: Mesophyte balance between water uptake and loss.
Charts - Fig 2.16 mangroves, Comparison table of plant types
Certificate Biology Form 3, Pages 68-70
7 2-3
ECOLOGY
REPRODUCTION IN PLANTS AND ANIMALS
Plant Adaptations - Halophytes and Mesophytes
Introduction and Importance of Reproduction
By the end of the lesson, the learner should be able to:
Define halophytes and saline habitat adaptations. Describe mesophyte characteristics. Compare different plant adaptation types.
Define reproduction and distinguish between asexual and sexual reproduction. Explain the importance of reproduction for species survival. State the role of cell division in reproduction.
Study of mangrove adaptations using Fig 2.16. Discussion of salt excretion, pneumatophores, viviparous seeds. Q/A: Mesophyte balance between water uptake and loss.
Q/A: Review of basic reproduction concepts. Discussion of reproduction as biological process for producing new individuals. Teacher exposition of species survival importance. Q/A: Examples of organisms in danger due to poor reproduction (cheetah).
Charts - Fig 2.16 mangroves, Comparison table of plant types
Charts - Types of reproduction, Examples of reproduction in different organisms
Certificate Biology Form 3, Pages 68-70
Certificate Biology Form 3, Page 99
7 4
REPRODUCTION IN PLANTS AND ANIMALS
Chromosomes and Genes
Mitosis - Introduction and Stages
By the end of the lesson, the learner should be able to:
Define chromosomes and genes. Explain diploid and haploid chromosome numbers. Describe the relationship between chromosomes, genes, and heredity. Give examples of chromosome numbers in different organisms.
Teacher exposition of chromosomes as DNA strands carrying genes. Discussion of diploid (2n) and haploid (n) numbers with examples: humans (46), fruit flies (8), onions (16). Q/A: Genes as functional units determining organism characteristics.
Charts - Chromosome structure, Examples of chromosome numbers in different species
Charts - Fig 3.1 mitosis stages, Models of cell division, Microscope slides of mitosis
Certificate Biology Form 3, Page 100
7 5
REPRODUCTION IN PLANTS AND ANIMALS
Mitosis - Differences in Plants and Animals
By the end of the lesson, the learner should be able to:
Compare mitosis in plant and animal cells. Explain cytokinesis differences. Describe the significance of mitosis. Examine mitosis in onion root tips practically.
Study of plant mitosis using Fig 3.2 - cell wall formation vs. invagination. Discussion of centriole presence in animals only. Practical examination of onion root tips to observe mitosis stages. Students draw and identify stages observed.
Charts - Fig 3.2 plant mitosis, Microscopes, Onion root tips, Acetocarmine stain, Glass slides, Cover slips
Certificate Biology Form 3, Pages 102-103, 108-109
8-9

End of Term Exam - full paper


Your Name Comes Here


Download

Feedback