If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Pollination - Insect Pollinated Flowers
|
By the end of the
lesson, the learner
should be able to:
To define pollination. To identify agents of pollination. To describe structure of insect-pollinated flowers. To examine insect-pollinated flowers. |
Q/A: Definition and agents of pollination. Practical examination: Structure of insect-pollinated flowers. Identification of adaptive features. Comparison with wind-pollinated flowers. Discussion: Importance of bright colors and nectar.
|
Insect-pollinated flowers, Hand lens, Measuring rulers, Drawing materials
|
Certificate Biology Form 3, Pages 120-121
|
|
1 | 4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Wind-Pollinated Flowers and Adaptations
|
By the end of the
lesson, the learner
should be able to:
To describe structure of wind-pollinated flowers. To identify adaptive features of wind-pollinated flowers. To compare insect and wind pollination. |
Practical examination: Structure of grass flowers, maize tassels. Identification of glumes, spikes, spikelets. Tabulate differences between insect and wind-pollinated flowers. Discussion: Adaptive features for wind pollination.
|
Wind-pollinated flowers (grass, maize), Hand lens, Charts, Drawing materials
|
Certificate Biology Form 3, Pages 120-121
|
|
1 | 5 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Self-Pollination Prevention and Fertilisation
|
By the end of the
lesson, the learner
should be able to:
To discuss mechanisms preventing self-pollination. To describe fertilisation process in flowering plants. To explain double fertilisation. |
Discussion: Methods preventing self-pollination. Teacher exposition: Process of fertilisation. Drawing diagrams showing fertilisation stages. Q/A: Significance of double fertilisation. Discussion: Formation of zygote and endosperm.
|
Charts showing fertilisation, Drawing materials, Textbook
|
Certificate Biology Form 3, Pages 121-123
|
|
2 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Seed and Fruit Development
|
By the end of the
lesson, the learner
should be able to:
To explain seed formation. To describe fruit development. To classify fruits using specific criteria. |
Discussion: Process of seed formation from ovule. Explanation of fruit development from ovary. Practical work: Examining variety of fruits. Classification of fruits into types. Recording observations and drawing fruits.
|
Variety of fruits, Petri dishes, Scalpels, Drawing materials, Charts
|
Certificate Biology Form 3, Pages 123-126
|
|
2 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Placentation and Internal Fruit Structure
|
By the end of the
lesson, the learner
should be able to:
To define placentation. To identify types of placentation. To label internal structure of fruits. To examine ovaries of various fruits. |
Teacher exposition: Types of placentation. Practical examination: Ovaries of beans, sunflower, pawpaw, orange. Drawing diagrams showing placentation types. Vertical sections of fruits showing internal structure.
|
Fruits (beans, sunflower, pawpaw, orange), Scalpels, Drawing materials
|
Certificate Biology Form 3, Pages 124-130
|
|
2 | 3-4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Placentation and Internal Fruit Structure
|
By the end of the
lesson, the learner
should be able to:
To define placentation. To identify types of placentation. To label internal structure of fruits. To examine ovaries of various fruits. |
Teacher exposition: Types of placentation. Practical examination: Ovaries of beans, sunflower, pawpaw, orange. Drawing diagrams showing placentation types. Vertical sections of fruits showing internal structure.
|
Fruits (beans, sunflower, pawpaw, orange), Scalpels, Drawing materials
|
Certificate Biology Form 3, Pages 124-130
|
|
2-3 |
Cat 2 |
|||||||
3 | 2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Fruit and Seed Dispersal
|
By the end of the
lesson, the learner
should be able to:
To explain adaptive features of fruits and seeds. To identify agents of dispersal. To classify fruits and seeds by dispersal method. |
Practical examination: Various fruits and seeds. Grouping according to dispersal methods. Discussion: Adaptive features for wind, water, animal dispersal. Demonstration of seed dispersal mechanisms. Recording observations of external features.
|
Variety of fruits and seeds, Hand lens, Drawing materials, Collection containers
|
Certificate Biology Form 3, Pages 130-131
|
|
3 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Fruit and Seed Dispersal
|
By the end of the
lesson, the learner
should be able to:
To explain adaptive features of fruits and seeds. To identify agents of dispersal. To classify fruits and seeds by dispersal method. |
Practical examination: Various fruits and seeds. Grouping according to dispersal methods. Discussion: Adaptive features for wind, water, animal dispersal. Demonstration of seed dispersal mechanisms. Recording observations of external features.
|
Variety of fruits and seeds, Hand lens, Drawing materials, Collection containers
|
Certificate Biology Form 3, Pages 130-131
|
|
3 | 4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Review and Assessment
|
By the end of the
lesson, the learner
should be able to:
To consolidate understanding of reproduction in plants. To apply knowledge in problem-solving. To prepare for examinations. |
Comprehensive review: Q/A session on all topics covered. Problem-solving exercises on reproduction processes. Drawing practice: Flower parts, fertilisation, fruit types. Written assessment covering unit objectives. Discussion of difficult concepts.
|
Past examination papers, Drawing materials, Assessment sheets, Charts for reference
|
Certificate Biology Form 3, Pages 113-143
|
|
3 | 5 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Introduction and Fertilisation Types
|
By the end of the
lesson, the learner
should be able to:
To distinguish between sexual and asexual reproduction in animals. To compare external and internal fertilisation. To give examples of animals using each method. To explain advantages of each fertilisation type. |
Q/A: Review plant reproduction concepts. Discussion: Types of reproduction in animals and hermaphrodites. Detailed comparison: External vs internal fertilisation with examples. Tabulate differences and advantages of each method.
|
Charts showing reproduction types and fertilisation, Textbook, Wall charts
|
Certificate Biology Form 3, Pages 147-148
|
|
4 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Reproduction in Amphibia and Mammalian Characteristics
Female Reproductive System Structure Stages of Reproduction and Oogenesis |
By the end of the
lesson, the learner
should be able to:
To describe reproduction in frogs and toads. To explain seasonal breeding and egg protection. To state characteristics of mammalian reproduction. To define viviparous, placental mammals and mammary glands. To list the stages of reproduction in mammals. To describe oogenesis from fetal development to puberty. To explain primordial follicle formation. To relate oogenesis to reproductive maturity. |
Examination of frog egg masses and jelly coating functions. Discussion: Seasonal breeding patterns and tadpole development. Teacher exposition: Mammalian reproduction characteristics. Q/A: Viviparous vs oviparous reproduction and mammary gland functions.
Teacher exposition: Four main reproductive stages overview. Detailed discussion: Oogenesis process from fetal development. Q/A: Primordial follicle formation and puberty changes. Drawing diagrams showing follicle development stages. |
Frog eggs specimens, Charts showing amphibian and mammalian reproduction, Hand lens
Charts of female reproductive system, Drawing materials, Models if available, Textbook Flow charts, Oogenesis diagrams, Drawing materials, Textbook |
Certificate Biology Form 3, Pages 148-149
Certificate Biology Form 3, Pages 151-152 |
|
4 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Menstrual Cycle - Follicle Development and Ovulation
|
By the end of the
lesson, the learner
should be able to:
To describe the 28-day menstrual cycle. To explain FSH action on follicle development. To describe Graafian follicle formation and ovulation. To outline corpus luteum formation and function. |
Teacher exposition: Complete menstrual cycle overview. Discussion: FSH stimulation and Graafian follicle development. Detailed explanation: LH surge, ovulation process on day 14. Q/A: Corpus luteum development and progesterone secretion.
|
Menstrual cycle charts, Drawing materials, Textbook
|
Certificate Biology Form 3, Pages 152-154
|
|
4 | 4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Hormonal Control and Menstrual Phases
|
By the end of the
lesson, the learner
should be able to:
To identify hormones controlling menstrual cycle. To explain FSH, LH, oestrogen and progesterone functions. To describe menstrual cycle phases and endometrium changes. To explain negative feedback mechanisms. |
Detailed discussion: Four main hormones and their interactions. Graphical analysis: Hormone levels throughout cycle. Discussion: Endometrium thickening and breakdown phases. Q/A: Negative feedback control mechanisms and menstruation.
|
Hormone level graphs, Menstrual cycle phase charts, Textbook
|
Certificate Biology Form 3, Pages 154-156
|
|
4 | 5 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Ovum Structure and Fertilisation Process
Early Development and Twins Formation |
By the end of the
lesson, the learner
should be able to:
To draw and label structure of human ovum. To describe sperm movement in female tract. To explain acrosome function during fertilisation. To outline zygote formation and nuclear fusion. |
Drawing and labeling: Mature human ovum structure. Discussion: Sperm journey from vagina to oviduct. Teacher exposition: Acrosome enzymes and zona pellucida penetration. Q/A: Nuclear fusion, chromosome combination and zygote formation.
|
Ovum structure charts, Fertilisation diagrams, Drawing materials, Textbook
Developmental stages charts, Twin formation diagrams, Drawing materials, Textbook |
Certificate Biology Form 3, Pages 155-157
|
|
5 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Implantation and Pregnancy Indicators
Gestation and Embryonic Membranes |
By the end of the
lesson, the learner
should be able to:
To define implantation and describe the process. To explain chorionic villi formation and anchoring. To identify early signs of pregnancy. To explain HCG hormone function and detection. To define gestation period in humans. To identify extra-embryonic membranes. To describe amnion, chorion and allantois functions. To explain amniotic fluid importance. |
Detailed discussion: Implantation timing and chorionic villi development. Teacher exposition: Blastocyst embedding in endometrium. Discussion: Early pregnancy symptoms and HCG hormone. Q/A: Laboratory confirmation methods and pregnancy tests.
Teacher exposition: 40-week gestation period comparison with other mammals. Detailed discussion: Formation and functions of amnion, chorion, allantois. Q/A: Amniotic fluid functions - protection, support, lubrication. Drawing embryonic membrane arrangement. |
Implantation charts, Pregnancy test demonstration materials, Textbook
Gestation charts, Fetal development models, Drawing materials, Textbook |
Certificate Biology Form 3, Pages 158-159
Certificate Biology Form 3, Pages 159-161 |
|
5 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Gestation and Embryonic Membranes
|
By the end of the
lesson, the learner
should be able to:
To define gestation period in humans. To identify extra-embryonic membranes. To describe amnion, chorion and allantois functions. To explain amniotic fluid importance. |
Teacher exposition: 40-week gestation period comparison with other mammals. Detailed discussion: Formation and functions of amnion, chorion, allantois. Q/A: Amniotic fluid functions - protection, support, lubrication. Drawing embryonic membrane arrangement.
|
Gestation charts, Fetal development models, Drawing materials, Textbook
|
Certificate Biology Form 3, Pages 159-161
|
|
5 | 4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Placenta Structure and Functions
|
By the end of the
lesson, the learner
should be able to:
To describe placenta structure and formation. To explain maternal and fetal blood separation. To identify nutrient transfer and gas exchange functions. To discuss placental barrier limitations. |
Detailed discussion: Placenta as temporary organ with dual tissue origin. Teacher exposition: Blood vessel arrangement and separation mechanisms. Discussion: Nutrient, oxygen transfer and harmful substance passage. Q/A: Placental protection and its limitations.
|
Placenta structure diagrams, Function charts, Drawing materials, Textbook
|
Certificate Biology Form 3, Pages 161-163
|
|
5 | 5 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Pregnancy Hormones and Parturition
|
By the end of the
lesson, the learner
should be able to:
To identify hormones during pregnancy. To explain HCG, progesterone and oestrogen roles. To describe hormonal changes triggering birth. To explain the parturition process. |
Discussion: Hormone secretion patterns during pregnancy. Teacher exposition: HCG, progesterone, oestrogen functions and interactions. Detailed explanation: Hormonal triggers for birth and oxytocin role. Q/A: Uterine contractions, cervix dilation and delivery stages.
|
Pregnancy hormone charts, Birth process diagrams, Hormone level graphs, Textbook
|
Certificate Biology Form 3, Pages 163-165
|
|
6 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Male Reproductive System Structure and Functions
|
By the end of the
lesson, the learner
should be able to:
To draw and label male reproductive system. To identify testes, epididymis, vas deferens and accessory glands. To describe functions of each component. To explain scrotum function and temperature regulation. |
Drawing and labeling: Complete male reproductive system. Teacher demonstration using charts and models. Discussion: Functions of testes, epididymis, vas deferens, accessory glands. Q/A: Scrotum location and temperature regulation for sperm production.
|
Male reproductive system charts, Drawing materials, Models if available, Textbook
|
Certificate Biology Form 3, Pages 164-166
|
|
6 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Sperm Structure and Male Hormones
|
By the end of the
lesson, the learner
should be able to:
To draw and label spermatozoon structure. To explain head, middle piece and tail functions. To describe testosterone and FSH roles. To identify secondary sexual characteristics. |
Drawing and labeling: Detailed sperm structure showing all components. Discussion: Sperm adaptations for fertilization and motility. Teacher exposition: Hormone control of sperm production and male development. Q/A: Testosterone effects and secondary sexual characteristics.
|
Sperm structure diagrams, Male hormone charts, Drawing materials, Textbook
|
Certificate Biology Form 3, Pages 166-167
|
|
6-7 |
End term exam |
|||||||
8 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
HIV/AIDS - Causes and Transmission
|
By the end of the
lesson, the learner
should be able to:
To describe HIV virus and immune system effects. To explain AIDS development and symptoms. To identify HIV transmission modes. To discuss high-risk behaviors. |
Detailed discussion: HIV virus structure and immune system destruction. Teacher exposition: AIDS development and opportunistic diseases. Discussion: Transmission modes - sexual, blood, mother-to-child. Q/A: High-risk behaviors and transmission prevention.
|
AIDS awareness charts, HIV transmission diagrams, Educational materials, Textbook
|
Certificate Biology Form 3, Pages 167-170
|
|
8 | 3 |
REPRODUCTION IN PLANTS AND ANIMALS
|
AIDS Symptoms and Prevention
|
By the end of the
lesson, the learner
should be able to:
To identify early and late AIDS symptoms. To describe opportunistic diseases. To explain AIDS prevention methods. To discuss social responsibility and behavior change. |
Discussion: Early AIDS symptoms and progression to full syndrome. Teacher exposition: Opportunistic diseases and their effects. Detailed explanation: Prevention strategies and behavior modification. Group discussion: Social responsibility and community health.
|
AIDS symptom charts, Prevention posters, Case study materials, Textbook
|
Certificate Biology Form 3, Pages 170-171
|
|
8 | 4 |
REPRODUCTION IN PLANTS AND ANIMALS
|
AIDS Symptoms and Prevention
|
By the end of the
lesson, the learner
should be able to:
To identify early and late AIDS symptoms. To describe opportunistic diseases. To explain AIDS prevention methods. To discuss social responsibility and behavior change. |
Discussion: Early AIDS symptoms and progression to full syndrome. Teacher exposition: Opportunistic diseases and their effects. Detailed explanation: Prevention strategies and behavior modification. Group discussion: Social responsibility and community health.
|
AIDS symptom charts, Prevention posters, Case study materials, Textbook
|
Certificate Biology Form 3, Pages 170-171
|
|
8 | 5 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Bacterial STIs - Gonorrhea and Syphilis
|
By the end of the
lesson, the learner
should be able to:
To describe gonorrhea causes, symptoms and treatment. To explain syphilis stages and progression. To identify transmission modes for bacterial STIs. To discuss antibiotic treatment and prevention. |
Detailed discussion: Gonorrhea bacterium and reproductive tract effects. Teacher exposition: Syphilis stages - primary, secondary, tertiary. Q/A: Transmission modes and treatment with antibiotics. Discussion: Prevention methods and partner responsibility.
|
STI information charts, Bacterial infection diagrams, Textbook
|
Certificate Biology Form 3, Pages 171-172
|
|
9 | 1 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Viral STIs and Other Infections
|
By the end of the
lesson, the learner
should be able to:
To describe genital herpes causes and symptoms. To explain hepatitis B transmission and effects. To identify trichomoniasis and other STIs. To emphasize prevention strategies for all STIs. |
Discussion: Viral STIs and their incurable nature. Teacher exposition: Herpes simplex virus effects and dormancy. Q/A: Hepatitis B liver effects and vaccination. Discussion: Comprehensive STI prevention and faithful relationships.
|
Viral STI charts, Prevention strategy posters, Textbook
|
Certificate Biology Form 3, Page 172
|
|
9 | 1-2 |
REPRODUCTION IN PLANTS AND ANIMALS
|
Viral STIs and Other Infections
|
By the end of the
lesson, the learner
should be able to:
To describe genital herpes causes and symptoms. To explain hepatitis B transmission and effects. To identify trichomoniasis and other STIs. To emphasize prevention strategies for all STIs. |
Discussion: Viral STIs and their incurable nature. Teacher exposition: Herpes simplex virus effects and dormancy. Q/A: Hepatitis B liver effects and vaccination. Discussion: Comprehensive STI prevention and faithful relationships.
|
Viral STI charts, Prevention strategy posters, Textbook
|
Certificate Biology Form 3, Page 172
|
|
9 |
Cat one |
Your Name Comes Here