If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opener exams |
|||||||
2 | 1 |
SALTS
|
Types of salts.
|
By the end of the
lesson, the learner
should be able to:
Define a salt. Describe various types of salts and give several examples in each case. |
Descriptive approach. Teacher exposes new concepts.
|
text book
|
K.L.B. BOOK II P. 91
|
|
2 | 2-3 |
SALTS
|
Solubility of salts in water.
Solubility of bases in water. |
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. Class experiments- Dissolve salts in 5cc of water. Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
Oxides, hydroxides, of various metals, litmus papers. |
K.L.B. BOOK II PP. 92-93
K.L.B. BOOK IIPP. 94-95 |
|
2 | 4 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
2 | 5 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
3 | 1 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
3 | 2-3 |
SALTS
|
Direct synthesis of a salts.
Ionic equations. |
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. Q/A: Ions present in given reactants. Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
Iron,
Sulphur PbNO3, MgSO4 solutions. |
K.L.B. BOOK II P. 104
|
|
3 | 4 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
3 | 5 |
SALTS
|
Effects of heat on carbonates.
Effects of heat on nitrates. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
Common metal nitrates. |
K.L.B. BOOK II PP. 108-109
|
|
4 | 1 |
SALTS
|
Effects of heat on sulphates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
4 | 2-3 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts. |
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. To state uses of salts |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. Teacher elucidates uses of salts. |
|
K.L.B. BOOK II P. 114
K.L.B. BOOK II P. 114 |
|
4 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrical conductivity.
|
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities of substances. |
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities. |
Various solids, bulb, battery, & wires.
|
K.L.B. BOOK II PP. 118-119
|
|
4 | 5 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Molten electrolytes.
|
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities molten electrolytes. |
Group experiments- to identify electrolytes in molten form.
Explain the difference in molten electrolytes. |
Molten candle wax
Sugar Sulphur Lead oxide. |
K.L.B. BOOK IIPP. 120-121
|
|
5 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrolysis.
|
By the end of the
lesson, the learner
should be able to:
To define electrolysis To describe the process of electrolysis in terms of charge movement. |
Descriptive approach punctuated with Q/A.
|
|
K.L.B. BOOK II
|
|
5 | 2-3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Aqueous electrolytes.
Electrodes.
Reaction on electrodes. |
By the end of the
lesson, the learner
should be able to:
To define an electrolyte To test for electrical conductivities of electrodes. To describe half- equation reactions at the cathode and anode |
To investigate chemical effect of an electric current.
Classify the solutions as electrolyte or non -electrolytes. Discuss the electrical properties of the solutions. To demonstrate ?Electrolysis of molten lead (II) bromide Observe colour changes Explanation of half-equations and reactions at the electrodes. |
Graphite electrodes
Battery Various aqueous solutions switch bulb. Graphite electrodes Battery Various aqueous solutions switch. |
K.L.B. BOOK II PP.122-123
K.L.B. BOOK II PP.126-127 |
|
5 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Binary electrolyte.
|
By the end of the
lesson, the learner
should be able to:
To define a binary electrolyte. To state the products of a binary electrolyte. |
Completing a table of electrolysis of binary electrolytes.
|
text book
|
K.L.B. BOOK II P.127
|
|
5 | 5 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Application of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
To state application of electrolysis. |
Discussion and explanations.
|
text book
|
K.L.B. BOOK II P. 128
|
|
6 |
Midterm exams |
|||||||
7 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electroplating.
|
By the end of the
lesson, the learner
should be able to:
To describe electroplating process. |
Experiment- Left overnight.
Electroplating an iron nail with silver nitrate/ copper sulphate. Brief discussion. |
Silver nitrate
Iron nail Complete circuit battery. |
K.L.B. BOOK II PP. 129-30
|
|
7 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon Burning carbon and oxygen. |
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. Describe reaction of carbon with oxygen. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater. |
text book
Charcoal, graphite. Carbon, limewater, tube, limewater stand& Bunsen burner. |
K.L.B. BOOK II PP. 131-133
K.L.B. BOOK II PP. 134-135 |
|
7 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
|
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
|
K.L.B. BOOK II P.126
|
|
7 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reaction of carbon with acids.
Preparation of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with acids. Prepare CO2 in the lab. |
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. |
Conc. HNO3, limewater.
|
K.L.B. BOOK II P.126
|
|
8-9 |
End term exams and closing |
Your Name Comes Here