If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1 |
MEASUREMENTS
|
Surface Area of Triangular and Rectangular-Based Prisms
Surface Area of Triangular, Rectangular and Square-Based Pyramids |
By the end of the
lesson, the learner
should be able to:
-Draw a rectangular prism and identify its faces, edges, and vertices; -Develop a net for a rectangular prism; -Calculate the surface area of a rectangular prism using its net; -Show interest in relating surface area to real-life applications. |
In groups, learners are guided to:
-Collect objects that are rectangular prisms; -Draw and sketch nets of rectangular prisms; -Measure dimensions of the faces on the nets; -Calculate the area of each face and add to find the total surface area; -Discuss and share results with other groups. |
How do we determine the surface area of a rectangular prism?
|
-Mathematics learners book grade 9 page 95;
-Manila paper for |
-Observation of practical work;
-Oral questions;
|
|
1 | 2 |
MEASUREMENTS
|
Surface Area of Triangular, Rectangular and Square-Based Pyramids
Area of a Sector and Segment of a Circle |
By the end of the
lesson, the learner
should be able to:
-Draw a rectangular-based pyramid and identify its faces, edges, and vertices; -Develop a net for a rectangular-based pyramid; -Calculate the surface area of a rectangular-based pyramid; -Appreciate the relationship between nets and surface area calculations. |
In groups, learners are guided to:
-Draw and sketch nets of rectangular-based pyramids; -Measure dimensions of the faces on the nets; -Calculate the area of each face and add to find the total surface area; -Discuss and share results with other groups; -Solve problems involving surface area of rectangular-based pyramids. |
How do we determine the surface area of a rectangular-based pyramid?
|
-Mathematics learners book grade 9 page 97;
-Manila paper for making nets; -Protractors; -Scientific calculators. |
-Observation of practical work;
-Oral questions;
-Written exercises;
-Model making assessment.
|
|
1 | 3 |
MEASUREMENTS
|
Area of a Sector and Segment of a Circle
|
By the end of the
lesson, the learner
should be able to:
-Define a segment of a circle; -Differentiate between a sector and a segment of a circle; -Calculate the area of a segment of a circle; -Show genuine interest in calculating areas of segments. |
In groups, learners are guided to:
-Draw circles and form segments by drawing chords; -Cut out segments from paper circles; -Derive the formula for the area of a segment (sector area minus triangle area); -Calculate the area of segments with different angles and chord lengths; -Discuss and share results with other groups. |
How do we calculate the area of a segment of a circle?
|
-Mathematics learners book grade 9 page 101;
-Circular paper cut-outs; -Protractors; -Scissors; -Rulers; -Scientific calculators. |
-Observation of practical work;
-Oral questions;
-Written exercises;
-Group work assessment.
|
|
1 | 4 |
MEASUREMENTS
|
Surface Area of a Cone in Real Life Situations
|
By the end of the
lesson, the learner
should be able to:
-Identify and draw a cone; -Develop a net for a cone; -Identify the parts of a cone (base, curved surface, apex, slant height); -Show interest in relating cones to real-life objects. |
In groups, learners are guided to:
-Collect objects with conical shapes; -Draw and discuss features of cones; -Draw circles and cut out sectors to form cone nets; -Fold sectors to form cones and observe the relationship between the sector angle and the cone dimensions; -Discuss and share findings with other groups. |
What are some real-life objects that have a conical shape?
|
-Mathematics learners book grade 9 page 102;
-Circular paper cut-outs; -Scissors; -Rulers; -Protractors; -Conical objects (funnels, party hats); -Glue. -Mathematics learners book grade 9 page 103; -Cone models; -Scientific calculators; -Charts showing formulas for surface area of cones. |
-Observation of practical work;
-Oral questions;
-Model making assessment;
-Group presentations.
|
|
1 | 5 |
MEASUREMENTS
|
Surface Area of a Sphere in Real Life Situations
Volume of Triangular and Rectangular-Based Prisms |
By the end of the
lesson, the learner
should be able to:
-Identify and draw a sphere; -Identify spherical objects in the environment; -Calculate the surface area of a sphere using the formula A = 4πr²; -Develop interest in calculating surface area of spheres. |
In groups, learners are guided to:
-Collect objects with spherical shapes; -Measure the diameter/radius of spherical objects; -Calculate the surface area of spheres using the formula A = 4πr²; -Discuss and share findings with other groups; -Relate surface area of spheres to real-life applications. |
What are some real-life objects that have a spherical shape?
|
-Mathematics learners book grade 9 page 104;
-Spherical objects (balls, oranges); -Measuring tape/rulers; -Scientific calculators; -Charts showing formulas for surface area of spheres. -Mathematics learners book grade 9 page 105; -Triangular prism models; -Rulers; -Charts showing formulas for volume of triangular prisms. |
-Observation;
-Oral questions;
-Written exercises;
-Group presentations.
|
|
2 | 1 |
MEASUREMENTS
|
Volume of Triangular and Rectangular-Based Prisms
Volume of Triangular, Rectangular and Square-Based Pyramids |
By the end of the
lesson, the learner
should be able to:
-Identify rectangular prisms/cuboids; -Calculate the volume of a rectangular prism using the formula V = length × width × height; -Solve problems involving volume of rectangular prisms; -Appreciate the use of volume calculations in real-life situations. |
In groups, learners are guided to:
-Collect objects shaped like rectangular prisms; -Measure the length, width, and height of rectangular prisms; -Calculate the volume using the formula V = length × width × height; -Solve practical problems involving volume of rectangular prisms; -Discuss and share results with other groups. |
How do we determine the volume of different solids?
|
-Mathematics learners book grade 9 page 107;
-Rectangular prism models (boxes); -Rulers; -Scientific calculators; -Charts showing formulas for volume of rectangular prisms. -Mathematics learners book grade 9 page 108; -Triangular-based pyramid models; -Charts showing formulas for volume of pyramids. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
2 | 2 |
MEASUREMENTS
|
Volume of Triangular, Rectangular and Square-Based Pyramids
|
By the end of the
lesson, the learner
should be able to:
-Identify rectangular and square-based pyramids; -Calculate the volume of rectangular and square-based pyramids; -Solve problems involving volume of rectangular and square-based pyramids; -Appreciate the application of volume calculations in real-life. |
In groups, learners are guided to:
-Identify and discuss models of rectangular and square-based pyramids; -Identify the base and height of the pyramids; -Calculate the area of the base (rectangle or square); -Calculate the volume using the formula V = ⅓ × area of base × height; -Discuss and share results with other groups. |
How does the shape of the base affect the volume of a pyramid?
|
-Mathematics learners book grade 9 page 109;
-Rectangular and square-based pyramid models; -Rulers; -Scientific calculators; -Charts showing formulas for volume of pyramids. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
2 | 3 |
MEASUREMENTS
|
Volume of a Cone in Real Life Situations
Volume of a Sphere in Real Life Situations |
By the end of the
lesson, the learner
should be able to:
-Identify cones and their properties; -Calculate the volume of a cone using the formula V = ⅓ × πr² × h; -Solve problems involving volume of cones; -Show interest in calculating volumes of cones. |
In groups, learners are guided to:
-Identify and discuss models of cones; -Identify the base radius and height of cones; -Calculate the volume using the formula V = ⅓ × πr² × h; -Solve practical problems involving volume of cones; -Discuss and share results with other groups. |
How do we determine the volume of a cone?
|
-Mathematics learners book grade 9 page 110;
-Cone models; -Rulers; -Scientific calculators; -Charts showing formulas for volume of cones. -Mathematics learners book grade 9 page 112; -Spherical objects (balls); -Measuring tape/rulers; -Charts showing formulas for volume of spheres. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
2 | 4 |
MEASUREMENTS
|
Volume of a Frustum in Real Life Situations
|
By the end of the
lesson, the learner
should be able to:
-Define a frustum; -Identify frustums of cones and pyramids; -Calculate the volume of a frustum; -Show genuine interest in calculating volumes of frustums. |
In groups, learners are guided to:
-Identify and discuss models of frustums; -Understand how a frustum is formed by cutting a cone or pyramid; -Learn the formula for volume of a frustum; -Calculate the volume of different frustums; -Discuss and share results with other groups. |
What is a frustum and how is it formed?
|
-Mathematics learners book grade 9 page 113;
-Frustum models; -Rulers; -Scientific calculators; -Charts showing formulas for volume of frustums. -Mathematics learners book grade 9 page 114; |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
2 | 5 |
MEASUREMENTS
|
Mass, Volume, Weight and Density - Instruments and Tools Used in Weighing
|
By the end of the
lesson, the learner
should be able to:
-Identify different instruments and tools used in weighing; -Describe the functions of various weighing instruments; -Use weighing instruments correctly; -Show interest in using weighing instruments. |
In groups, learners are guided to:
-Identify and discuss different types of balances used for weighing; -Identify commonly used balances in their locality; -Discuss what different weighing instruments are used for; -Practice using weighing instruments to measure mass of objects; -Discuss and share findings with other groups. |
How do you weigh materials and objects?
|
-Mathematics learners book grade 9 page 117;
-Different types of weighing instruments; -Various objects to weigh; -Charts showing different weighing instruments. |
-Observation;
-Oral questions;
-Practical assessment;
-Group presentations.
|
|
3 | 1 |
MEASUREMENTS
|
Mass, Volume, Weight and Density - Converting Units of Mass
Mass, Volume, Weight and Density - Relating Mass and Weight |
By the end of the
lesson, the learner
should be able to:
-Identify different units of mass; -Convert units of mass from one form to another; -Solve problems involving conversion of mass units; -Appreciate the importance of standardized units of mass. |
In groups, learners are guided to:
-Collect and weigh different items using a weighing balance; -Record measurements in different units; -Convert between different units of mass (kg, g, mg, etc.); -Solve problems involving mass conversions; -Discuss and share results with other groups. |
Why do we need to convert units of mass from one form to another?
|
-Mathematics learners book grade 9 page 118;
-Weighing instruments; -Various objects to weigh; -Charts showing relationship between different units of mass. -Mathematics learners book grade 9 page 119; -Spring balance; -Digital devices for research. |
-Observation;
-Oral questions;
-Written exercises;
-Practical assessment.
|
|
3 | 2 |
MEASUREMENTS
|
Mass, Volume, Weight and Density - Determining Mass, Volume and Density
Mass, Volume, Weight and Density - Determining Density of Objects |
By the end of the
lesson, the learner
should be able to:
-Define density; -Understand the relationship between mass, volume, and density; -Calculate density using the formula D = m/V; -Show genuine interest in determining density of various substances. |
In groups, learners are guided to:
-Measure the mass of different objects; -Determine the volume of objects using water displacement method; -Calculate the density of objects using the formula D = m/V; -Complete a table with mass, volume, and density of different objects; -Discuss and share findings with other groups. |
How do we determine the density of an object?
|
-Mathematics learners book grade 9 page 121;
-Weighing instruments; -Measuring cylinders; -Various objects (coins, stones, metal pieces); -Water; -Scientific calculators. -Mathematics learners book grade 9 page 122; -Scientific calculators; -Chart showing densities of common materials; -Examples of applications of density in real life. |
-Observation;
-Oral questions;
-Written exercises;
-Practical assessment.
|
|
3 | 3 |
MEASUREMENTS
|
Mass, Volume, Weight and Density - Determining Mass Given Volume and Density
|
By the end of the
lesson, the learner
should be able to:
-Rearrange the density formula to find mass; -Calculate mass given volume and density using the formula m = D × V; -Solve problems involving mass, volume, and density; -Show interest in applying density concepts to find mass. |
In groups, learners are guided to:
-Review the relationship between mass, volume, and density; -Rearrange the formula D = m/V to find m = D × V; -Calculate the mass of objects given their volume and density; -Solve practical problems involving mass, volume, and density; -Discuss and share results with other groups. |
How can we determine the mass of an object if we know its volume and density?
|
-Mathematics learners book grade 9 page 123;
-Scientific calculators; -Chart showing densities of common materials; -Examples of applications of density in real life. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
3 | 4 |
MEASUREMENTS
|
Mass, Volume, Weight and Density - Determining Volume Given Mass and Density
Time, Distance and Speed - Working Out Speed in Km/h and m/s |
By the end of the
lesson, the learner
should be able to:
-Rearrange the density formula to find volume; -Calculate volume given mass and density using the formula V = m/D; -Solve problems involving mass, volume, and density; -Develop genuine interest in applying density concepts to find volume. |
In groups, learners are guided to:
-Review the relationship between mass, volume, and density; -Rearrange the formula D = m/V to find V = m/D; -Calculate the volume of objects given their mass and density; -Solve practical problems involving mass, volume, and density; -Discuss and share results with other groups. |
How can we determine the volume of an object if we know its mass and density?
|
-Mathematics learners book grade 9 page 123;
-Scientific calculators; -Chart showing densities of common materials; -Examples of applications of density in real life. -Mathematics learners book grade 9 page 124; -Stopwatch/timer; -Measuring tape/rulers; -Sports field or open area. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
3 | 5 |
MEASUREMENTS
|
Time, Distance and Speed - Working Out Speed in Km/h and m/s
Time, Distance and Speed - Working Out Average Speed in Real Life Situations |
By the end of the
lesson, the learner
should be able to:
-Calculate speed in kilometers per hour (km/h); -Convert speed from m/s to km/h and vice versa; -Solve problems involving speed in km/h; -Appreciate the different units used for expressing speed. |
In groups, learners are guided to:
-Record distance covered by vehicles in kilometers and time taken in hours; -Calculate speed using the formula speed = distance/time; -Express speed in kilometers per hour (km/h); -Convert speed from m/s to km/h using the relationship 1 m/s = 3.6 km/h; -Complete a table with distance, time, and speed; -Discuss and share results with other groups. |
Why do we need different units for measuring speed?
|
-Mathematics learners book grade 9 page 125;
-Scientific calculators; -Chart showing conversion between m/s and km/h; -Examples of speeds of various objects and vehicles. -Mathematics learners book grade 9 page 126; -Chart showing examples of average speed calculations; -Examples of journey scenarios with varying speeds. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
4 | 1 |
MEASUREMENTS
|
Time, Distance and Speed - Determining Velocity in Real Life Situations
Time, Distance and Speed - Working Out Acceleration in Real Life Situations |
By the end of the
lesson, the learner
should be able to:
-Define velocity; -Differentiate between speed and velocity; -Calculate velocity in different directions; -Show genuine interest in understanding velocity. |
In groups, learners are guided to:
-Discuss the difference between speed and velocity; -Record distance covered, time taken, and direction for various movements; -Calculate velocity using the formula velocity = displacement/time; -Express velocity with direction (e.g., 5 m/s eastward); -Solve problems involving velocity in real-life contexts; -Discuss and share results with other groups. |
What is the difference between speed and velocity?
|
-Mathematics learners book grade 9 page 129;
-Stopwatch/timer; -Measuring tape/rulers; -Scientific calculators; -Compass for directions. -Mathematics learners book grade 9 page 130; -Chart showing examples of acceleration calculations; -Examples of acceleration in real-life situations. |
-Observation;
-Oral questions;
-Written exercises;
-Practical assessment.
|
|
4 | 2 |
MEASUREMENTS
|
Time, Distance and Speed - Identifying Longitudes on the Globe
|
By the end of the
lesson, the learner
should be able to:
-Identify longitudes on a globe; -Understand the concept of the prime meridian; -Describe how longitudes are measured in degrees east or west; -Show interest in understanding the globe and longitudes. |
In groups, learners are guided to:
-Use a globe to identify circles that pass through North and South poles; -Search from the Internet or print media for the meaning of these circles; -Identify special circles on the globe (Prime Meridian, International Date Line); -Discuss how longitudes are measured in degrees east or west of the Prime Meridian; -Discuss and share findings with other groups. |
Why does time vary in different places of the world?
|
-Mathematics learners book grade 9 page 131;
-Globe; -World map showing longitudes; -Digital devices for research; -Charts showing the longitude system. |
-Observation;
-Oral questions;
-Written exercises;
-Group presentations.
|
|
4 | 3 |
MEASUREMENTS
|
Time, Distance and Speed - Relating Longitudes to Time on the Globe
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes |
By the end of the
lesson, the learner
should be able to:
-Understand the relationship between longitudes and time; -Calculate the time difference between places on different longitudes; -Identify places with the same local time; -Appreciate the importance of longitudes in determining time. |
In groups, learners are guided to:
-Discuss how the earth rotates 360° in 24 hours (15° per hour); -Complete a table showing degrees of rotation for different time periods; -Identify pairs of points on a globe that share the same local time; -Understand that places on the same longitude have the same local time; -Discuss and share findings with other groups. |
How are longitudes related to time?
|
-Mathematics learners book grade 9 page 133;
-Globe; -World map showing time zones; -Digital devices for research; -Charts showing the relationship between longitudes and time. -Mathematics learners book grade 9 page 134; -Scientific calculators; -Charts showing examples of local time calculations. |
-Observation;
-Oral questions;
-Written exercises;
-Group presentations.
|
|
4 | 4 |
MEASUREMENTS
|
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
|
By the end of the
lesson, the learner
should be able to:
-Calculate local time across the International Date Line; -Solve complex problems involving local time at different longitudes; -Apply knowledge of local time to real-life situations; -Appreciate the practical applications of understanding local time. |
In groups, learners are guided to:
-Review the calculation of local time at different longitudes; -Understand the International Date Line and its effect on time/date; -Calculate local time for places on opposite sides of the International Date Line; -Solve complex problems involving local time at different longitudes; -Discuss real-life applications such as international travel and communication; -Discuss and share results with other groups. |
How does the International Date Line affect time calculations?
|
-Mathematics learners book grade 9 page 136;
-Globe; -World map showing time zones and the International Date Line; -Scientific calculators; -Charts showing examples of local time calculations. -Mathematics learners book grade 9 page 137; -World map showing time zones; -Digital devices showing current time in different cities; -Scientific calculators. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
4 | 5 |
MEASUREMENTS
|
Money - Identifying Currencies Used in Different Countries
|
By the end of the
lesson, the learner
should be able to:
-Identify currencies used in different countries; -Match currencies with their respective countries; -Recognize currency symbols; -Show interest in learning about different currencies. |
In groups, learners are guided to:
-Use digital devices to search and print pictures of currencies from: a) Neighboring countries b) Other African countries c) Common currencies used globally; -Make a collage of different currencies on a piece of carton; -Match currencies with their respective countries; -Identify currency symbols (e.g., $, €, £, ¥); -Display and present their collages to other groups. |
Why do different countries use different currencies?
|
-Mathematics learners book grade 9 page 138;
-Digital devices for research; -Pictures/samples of different currencies; -Manila paper or carton; -Charts showing currencies and their countries. |
-Observation;
-Oral questions;
-Group presentations;
-Assessment of currency collages.
|
|
5 | 1 |
MEASUREMENTS
|
Money - Converting Currency from One to Another in Real Life Situations
|
By the end of the
lesson, the learner
should be able to:
-Understand exchange rates; -Convert foreign currency to Kenyan currency; -Use exchange rate tables; -Appreciate the concept of currency exchange. |
In groups, learners are guided to:
-Study exchange rates of international currencies in a table; -Understand the concept of buying and selling rates; -Convert foreign currencies to Kenyan Shillings using the buying rate; -Solve problems involving currency conversion; -Use digital devices to compare exchange rates from different sources; -Discuss and share results with other groups. |
Why do we change currencies from one form to another?
|
-Mathematics learners book grade 9 page 141;
-Exchange rate tables from newspapers or online sources; -Scientific calculators; -Digital devices for checking current exchange rates; -Charts showing examples of currency conversions. -Mathematics learners book grade 9 page 142; |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
5 | 2 |
MEASUREMENTS
|
Money - Working Out Export Duties Charged on Goods
Money - Working Out Import Duties Charged on Goods |
By the end of the
lesson, the learner
should be able to:
-Define export duty; -Calculate export duty on goods; -Understand the purpose of export duties; -Appreciate the role of export duties in international trade. |
In groups, learners are guided to:
-Use digital devices to search for the meaning of export duty; -Research the percentage of export duty on different goods in Kenya; -Calculate export duty on goods using the formula: Export Duty = Value of Goods × Duty Rate; -Solve problems involving export duties; -Discuss the purpose and impact of export duties; -Discuss and share findings with other groups. |
What are the types of taxes the government levy on its citizens?
|
-Mathematics learners book grade 9 page 143;
-Digital devices for research; -Scientific calculators; -Charts showing export duty rates; -Examples of export scenarios. -Charts showing import duty rates; -Examples of import scenarios. |
-Observation;
-Oral questions;
-Written exercises;
-Research presentation.
|
|
5 | 3 |
MEASUREMENTS
|
Money - Working Out Excise Duty Charged on Goods
|
By the end of the
lesson, the learner
should be able to:
-Define excise duty; -Identify goods and services that attract excise duty; -Calculate excise duty on goods and services; -Show interest in understanding taxation systems. |
In groups, learners are guided to:
-Use digital devices to search for the meaning of excise duty; -Research goods that attract excise duty; -Research percentage of excise duty on goods and services; -Calculate excise duty on various goods and services; -Solve problems involving excise duty; -Discuss and share findings with other groups. |
What is excise duty and how is it different from other taxes?
|
-Mathematics learners book grade 9 page 145;
-Digital devices for research; -Scientific calculators; -Charts showing excise duty rates; -Examples of goods subject to excise duty. |
-Observation;
-Oral questions;
-Written exercises;
-Research presentation.
|
|
5 | 4 |
MEASUREMENTS
|
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
Approximations and Errors - Approximating Quantities in Measurements |
By the end of the
lesson, the learner
should be able to:
-Define Value Added Tax (VAT); -Identify goods and services that attract VAT; -Calculate VAT on goods and services; -Appreciate the role of VAT in government revenue collection. |
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT; -Research goods that attract VAT; -Research the percentage of VAT charged on goods and services; -Study receipts to identify VAT amounts; -Calculate VAT on various goods and services; -Discuss and share findings with other groups. |
How is VAT calculated and why is it charged?
|
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT; -Digital devices for research; -Scientific calculators; -Charts showing VAT calculations. -Mathematics learners book grade 9 page 148; -Measuring tapes/rulers; -Various objects to measure; -Charts showing conventional and arbitrary units; -Open space for measuring with strides. |
-Observation;
-Oral questions;
-Written exercises;
-Analysis of receipts.
|
|
5 | 5 |
MEASUREMENTS
|
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
Approximations and Errors - Determining Percentage Errors Using Actual Measurements |
By the end of the
lesson, the learner
should be able to:
-Define error in measurements; -Determine errors by comparing estimated and actual measurements; -Calculate absolute errors in measurements; -Develop genuine interest in understanding measurement errors. |
In groups, learners are guided to:
-Estimate the measurements of various items in centimeters; -Use a ruler to find the actual measurements of the items; -Find the difference between the estimated and measured values; -Understand that error = measured value - estimated value; -Complete a table with estimated values, measured values, and errors; -Discuss and share findings with other groups. |
How do we determine errors in measurements?
|
-Mathematics learners book grade 9 page 149;
-Measuring tapes/rulers; -Various objects to measure; -Weighing scales/balances; -Scientific calculators. -Mathematics learners book grade 9 page 151; |
-Observation;
-Oral questions;
-Written exercises;
-Practical assessment.
|
|
6 | 1 |
Geometry
|
Similarity and Enlargement - Similar figures and properties
Similarity and Enlargement - Identifying similar objects |
By the end of the
lesson, the learner
should be able to:
Identify similar figures and their properties; Measure corresponding sides and angles of similar figures; Appreciate the concept of similarity in real-life objects. |
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them. Learners measure all the corresponding angles and discover that they are equal. |
What makes two figures similar?
|
-KLB Mathematics Grade 9 Textbook page 203
-Ruler -Protractor -Cut-out shapes -Charts showing similar figures -Manila paper -KLB Mathematics Grade 9 Textbook page 204 -Various geometric objects -Charts with examples -Worksheets with diagrams |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
6 | 2 |
Geometry
|
Similarity and Enlargement - Drawing similar figures
|
By the end of the
lesson, the learner
should be able to:
Draw similar figures in different situations; Calculate dimensions of similar figures using scale factors; Enjoy creating similar figures. |
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions. Learners construct triangle PQR and compare results with other groups. |
How do we construct a figure similar to a given figure?
|
-KLB Mathematics Grade 9 Textbook page 206
-Ruler -Protractor -Pair of compasses -Drawing paper -Calculator -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
6 | 3 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
Similarity and Enlargement - Negative scale factors |
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing -KLB Mathematics Grade 9 Textbook page 211 -Charts showing negative scale factor enlargements |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
6 | 4 |
Geometry
|
Similarity and Enlargement - Drawing images of objects
Similarity and Enlargement - Linear scale factor |
By the end of the
lesson, the learner
should be able to:
Apply properties of enlargement to draw similar objects and their images; Use scale factors to determine dimensions of images; Enjoy creating enlarged images of objects. |
Learners trace a given figure and join the center of enlargement to each vertex.
Learners multiply each distance by the scale factor to locate the image points. Learners locate the image points and join them to create the enlarged figure. |
How do we draw the image of an object under an enlargement with a given center and scale factor?
|
-KLB Mathematics Grade 9 Textbook page 214
-Ruler -Grid paper -Colored pencils -Charts showing steps of enlargement -Manila paper -KLB Mathematics Grade 9 Textbook page 216 -Calculator -Similar objects of different sizes -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
6 | 5 |
Geometry
|
Similarity and Enlargement - Using coordinates in enlargement
|
By the end of the
lesson, the learner
should be able to:
Find the coordinates of images under enlargement; Determine the center of enlargement and scale factor from given coordinates; Appreciate the use of coordinates in describing enlargements. |
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points. Learners calculate the scale factor using the coordinates of corresponding points. |
How do we use coordinate geometry to describe and perform enlargements?
|
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper -Ruler -Colored pencils -Calculator -Charts with coordinate examples |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
7 | 1 |
Geometry
|
Similarity and Enlargement - Applications of similarity
Trigonometry - Angles and sides of right-angled triangles |
By the end of the
lesson, the learner
should be able to:
Apply similarity concepts to solve real-life problems; Calculate heights and distances using similar triangles; Value the practical applications of similarity in everyday life. |
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering. Learners work on practical applications of similarity in the environment. |
How can we use similarity to solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 219
-Ruler -Calculator -Drawing paper -Charts with real-life applications -Manila paper for presentations -KLB Mathematics Grade 9 Textbook page 220 -Protractor -Set square -Charts with labeled triangles -Colored markers |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
7 | 2 |
Geometry
|
Trigonometry - Sine ratio
Trigonometry - Cosine ratio |
By the end of the
lesson, the learner
should be able to:
Identify sine ratio from a right-angled triangle; Calculate sine of angles in right-angled triangles; Value the use of sine ratio in solving problems. |
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths. Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio. |
What is the sine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 222
-Ruler -Protractor -Calculator -Drawing paper -Charts showing sine ratio -Manila paper -KLB Mathematics Grade 9 Textbook page 223 -Charts showing cosine ratio -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
7 | 3 |
Geometry
|
Trigonometry - Tangent ratio
|
By the end of the
lesson, the learner
should be able to:
Identify tangent ratio from a right-angled triangle; Calculate tangent of angles in right-angled triangles; Appreciate the importance of tangent ratio in problem-solving. |
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths. Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio. |
What is the tangent of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 225
-Ruler -Protractor -Calculator -Drawing paper -Charts showing tangent ratio -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
7 | 4 |
Geometry
|
Trigonometry - Reading tables of sines
Trigonometry - Reading tables of cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read tables of trigonometric ratios of acute angles; Find the sine values of different angles using tables; Value the importance of mathematical tables in finding trigonometric ratios. |
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values. Learners find sine values of angles with decimal parts using the 'ADD' column in the tables. |
How do we use mathematical tables to find the sine of an angle?
|
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises -KLB Mathematics Grade 9 Textbook page 229-231 |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
7 | 5 |
Geometry
|
Trigonometry - Using calculators for trigonometric ratios
Trigonometry - Calculating lengths using trigonometric ratios |
By the end of the
lesson, the learner
should be able to:
Determine trigonometric ratios of acute angles using calculators; Compare values obtained from tables and calculators; Value the use of calculators in finding trigonometric ratios. |
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables. Learners use calculators to find sine, cosine, and tangent of various angles. |
How do we use calculators to find trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators -Mathematical tables -Worksheets -Chart showing calculator keys -Sample exercises -KLB Mathematics Grade 9 Textbook page 234 -Ruler -Drawing paper -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
8 | 1 |
Geometry
|
Trigonometry - Calculating angles using trigonometric ratios
Trigonometry - Application in heights and distances |
By the end of the
lesson, the learner
should be able to:
Use trigonometric ratios to calculate angles in right-angled triangles; Apply inverse trigonometric functions to find angles; Enjoy solving problems involving trigonometric ratios. |
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles. Learners solve problems involving finding angles in right-angled triangles. |
How do we find unknown angles in right-angled triangles using trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 237 -Charts with real-life examples -Manila paper |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
8 | 2 |
Geometry
|
Trigonometry - Application in navigation
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios in navigation problems; Calculate distances and bearings using trigonometry; Appreciate the importance of trigonometry in navigation. |
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios. Learners discuss how pilots, sailors, and navigators use trigonometry. |
How is trigonometry used in navigation and determining positions?
|
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators -Mathematical tables -Ruler -Protractor -Maps -Charts with navigation examples |
-Oral questions
-Problem-solving
-Written exercise
-Assessment rubrics
|
|
8 | 3 |
Geometry
Data Handling and Probability |
Trigonometry - Review and mixed applications
Data Interpretation - Appropriate class width |
By the end of the
lesson, the learner
should be able to:
Apply trigonometric concepts in mixed application problems; Solve problems involving both scale drawing and trigonometry; Value the integration of different geometric concepts in problem-solving. |
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems. Learners discuss how different geometric concepts interconnect in solving real-world problems. |
How can we integrate different geometric concepts to solve complex problems?
|
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators -Mathematical tables -Ruler -Protractor -Drawing paper -Past examination questions -KLB Mathematics Grade 9 Textbook page 244 -Calculator -Graph paper -Manila paper -Rulers -Colored markers |
-Oral questions
-Problem-solving
-Written exercise
-Assessment test
|
|
8 | 4 |
Data Handling and Probability
|
Data Interpretation - Finding range and creating groups
Data Interpretation - Frequency distribution tables |
By the end of the
lesson, the learner
should be able to:
Calculate the range of a set of data; Divide data into suitable class intervals; Show interest in grouping data for better representation. |
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data. Learners complete a table using a class width of 10 and determine the number of classes formed. |
How does the range of data help us determine appropriate class intervals?
|
-KLB Mathematics Grade 9 Textbook page 245
-Calculator -Manila paper -Data sets -Chart with examples -Colored markers -KLB Mathematics Grade 9 Textbook page 247 -Chart paper -Ruler |
-Oral questions
-Written exercise
-Observation
-Group work assessment
|
|
8 | 5 |
Data Handling and Probability
|
Data Interpretation - Creating frequency tables with different class intervals
|
By the end of the
lesson, the learner
should be able to:
Construct frequency tables starting with different class intervals; Use tally marks to represent data in frequency tables; Appreciate the use of different class intervals in data representation. |
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class. Learners compare and discuss different frequency tables. |
How do we choose appropriate starting points for class intervals?
|
-KLB Mathematics Grade 9 Textbook page 247
-Calculator -Ruler -Graph paper -Manila paper -Worksheets with data |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
9 | 1 |
Data Handling and Probability
|
Data Interpretation - Modal class
Data Interpretation - Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
Identify the modal class of grouped data; Determine the class with the highest frequency; Develop interest in finding the modal class in real-life data. |
Learners are presented with assessment marks in a mathematics test for 32 learners.
Learners draw a frequency distribution table to represent the information. Learners identify and write down the class with the highest frequency (modal class). |
What is the modal class and how is it determined?
|
-KLB Mathematics Grade 9 Textbook page 248
-Calculator -Ruler -Graph paper -Chart showing frequency distribution tables -Colored markers -KLB Mathematics Grade 9 Textbook page 249 -Chart showing frequency tables -Worksheets -Manila paper |
-Oral questions
-Group work
-Written exercise
-Peer assessment
|
|
9 | 2 |
Data Handling and Probability
|
Data Interpretation - Mean of grouped data
Data Interpretation - Mean calculation in real-life situations |
By the end of the
lesson, the learner
should be able to:
Calculate the mean of grouped data; Find the midpoint of class intervals and use in calculations; Value the importance of mean in summarizing data. |
Learners consider a frequency distribution table representing masses in kilograms of learners in a class.
Learners complete a table by finding midpoints of class intervals and calculating fx. Learners find the sum of frequencies, sum of fx, and divide to find the mean. |
How do we calculate the mean of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 250
-Calculator -Graph paper -Manila paper -Chart with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 251 -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Checklist
|
|
9 | 3 |
Data Handling and Probability
|
Data Interpretation - Median of grouped data
|
By the end of the
lesson, the learner
should be able to:
Determine the median of grouped data; Find cumulative frequencies to locate the median class; Value the importance of median in data interpretation. |
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency. Learners find the sum of frequency, divide by 2, and identify the position of the median mass. |
How do we determine the median of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 252
-Calculator -Chart showing cumulative frequency tables -Worksheets -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
9 | 4 |
Data Handling and Probability
|
Data Interpretation - Calculating median using formula
Data Interpretation - Median calculations in real-life situations |
By the end of the
lesson, the learner
should be able to:
Apply the formula for calculating median of grouped data; Identify class boundaries, frequencies, and cumulative frequencies; Show interest in finding median from real-life data. |
Learners consider marks scored by 40 learners in a test presented in a table.
Learners complete the column for cumulative frequency and identify the median class. Learners identify the lower class boundary, cumulative frequency above median class, class width, and frequency of median class to substitute in the formula. |
How do we use the formula to calculate the median of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 253
-Calculator -Graph paper -Chart showing median formula -Worksheets -Manila paper -KLB Mathematics Grade 9 Textbook page 254 -Chart with example calculations -Worksheets with real-life data -Colored markers |
-Oral questions
-Written exercise
-Group work assessment
-Assessment rubrics
|
|
9 | 5 |
Data Handling and Probability
|
Probability - Equally likely outcomes
Probability - Range of probability |
By the end of the
lesson, the learner
should be able to:
Perform experiments involving equally likely outcomes; Record outcomes of chance experiments; Appreciate that some events have equal chances of occurring. |
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up. Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities. |
What makes events equally likely to occur?
|
-KLB Mathematics Grade 9 Textbook page 256
-Coins -Chart paper -Table for recording outcomes -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 257 -Dice -Chart showing probability scale (0-1) |
-Oral questions
-Practical activity
-Group work assessment
-Observation
|
|
10 | 1 |
Data Handling and Probability
|
Probability - Complementary events
Probability - Mutually exclusive events |
By the end of the
lesson, the learner
should be able to:
Calculate probability of complementary events; Understand that sum of probabilities of complementary events is 1; Show interest in applying complementary probability in real-life situations. |
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement. Learners verify that the sum of probabilities of an event and its complement equals 1. |
How are complementary events related in terms of their probabilities?
|
-KLB Mathematics Grade 9 Textbook page 258
-Calculator -Chart showing complementary events -Worksheets with problems -Manila paper -Colored markers -Coins -Chart with examples of mutually exclusive events -Flashcards with different scenarios |
-Oral questions
-Written exercise
-Group work assessment
-Observation
|
|
10 | 2 |
Data Handling and Probability
|
Probability - Experiments with mutually exclusive events
|
By the end of the
lesson, the learner
should be able to:
Perform experiments of single chance involving mutually exclusive events; Calculate probability of mutually exclusive events; Value the application of mutually exclusive events in real-life. |
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box. Learners find probabilities of individual events and their union. |
How do we calculate the probability of mutually exclusive events?
|
-KLB Mathematics Grade 9 Textbook page 259
-Dice -Colored objects in boxes -Calculator -Chart showing probability calculations -Worksheets with problems |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
10 | 3 |
Data Handling and Probability
|
Probability - Independent events
Probability - Calculating probabilities of independent events |
By the end of the
lesson, the learner
should be able to:
Perform experiments involving independent events; Understand that outcome of one event doesn't affect another; Show interest in applying independent events probability in real-life. |
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times. Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence). |
What makes events independent from each other?
|
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice -Table for recording outcomes -Chart showing examples of independent events -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 261 -Calculator -Chart showing multiplication rule -Worksheets with problems |
-Oral questions
-Practical activity
-Group discussions
-Observation
|
|
10 | 4 |
Data Handling and Probability
|
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams |
By the end of the
lesson, the learner
should be able to:
Draw a probability tree diagram for a single outcome; Represent probability situations using tree diagrams; Value the use of tree diagrams in organizing probability information. |
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome. Learners complete a tree diagram with possible outcomes and their probabilities. |
How do tree diagrams help us understand probability situations?
|
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper -Ruler -Worksheets with blank tree diagrams -Chart showing completed tree diagrams -Colored markers -KLB Mathematics Grade 9 Textbook page 263 -Calculator -Chart showing complex tree diagrams -Worksheets with problems |
-Oral questions
-Practical activity
-Group work assessment
-Checklist
|
|
10 | 5 |
Data Handling and Probability
|
Probability - Complex tree diagrams
|
By the end of the
lesson, the learner
should be able to:
|
|
|
|
|
|
11 |
End term Assessment |
Your Name Comes Here