If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
STRUCTURE & BONDING
|
Chemical bonds.
Ionic bond.
Ionic bond representation. Grant ionic structures. |
By the end of the
lesson, the learner
should be able to:
Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. Describe the crystalline ionic compound. Give examples of ionic substances. |
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements. Discuss formation of ionic bond. Discuss the group ionic structures of NaCl. Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
text book
Chart- dot and cross diagrams. Models for bonding. Giant sodium chloride model. |
K.L.B. BOOK IIP54
PP 57-58 K.L.B. BOOK II PP 56-58 |
|
2 | 3 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
Covalent bond. |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. |
text book
|
K.L.B. BOOK IIPP 58-59
|
|
2 | 4 |
STRUCTURE & BONDING
|
Co-ordinate bond.
|
By the end of the
lesson, the learner
should be able to:
To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. |
Exposition- teacher explains the nature of co-ordinate bond.
Students represent co-ordinate bond diagrammatically. |
text book
|
K.L.B. BOOK II P 65
|
|
3 | 1-2 |
STRUCTURE & BONDING
|
Molecular structure.
Trend in physical properties of molecular structures. |
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
Discuss comparative physical properties of substances. exhibiting molecular structure. Explain variation in the physical properties. |
text book
Sugar, naphthalene, iodine rhombic sulphur. |
K.L.B. BOOK IIP 65
|
|
3 | 3 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
Giant atomic structure in graphite. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. |
Diagrammatic representation of diamond.
Discuss uses of diamond. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
3 | 4 |
STRUCTURE & BONDING
|
Metallic bond.
Uses of some metals.
|
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. |
text book
|
K.L.B. BOOK IIP 70
|
|
4 | 1-2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
|
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
|
4 | 3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
Chemical properties of elements in period 3. |
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK II P. 77
|
|
4 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
|
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
5 | 1-2 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
PROPERTIES AND TRENDS ACROSS PERIOD THREE SALTS |
Oxides of period 3 elements.
Chlorides of period 3 elements. Types of salts. |
By the end of the
lesson, the learner
should be able to:
To identify bonds across elements in period 3. To explain chemical behavior of their oxide. To explain chemical behavior of their chlorides. To describe hydrolysis reaction. |
Comparative analysis, discussion and explanation.
|
The periodic table.
The periodic table. text book |
K.L.B. BOOK II P. 84
K.L.B. BOOK II PP. 77-78 |
|
5 | 3 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
5 | 4 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
6 | 1-2 |
SALTS
|
Solubility of bases in water.
Methods of preparing various salts. |
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. To describe various methods of preparing some salts. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2. |
Oxides, hydroxides, of various metals, litmus papers.
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3. |
K.L.B. BOOK IIPP. 94-95
K.L.B. BOOK II pp96 |
|
6 | 3 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
6 | 4 |
SALTS
|
Direct synthesis of a salts.
|
By the end of the
lesson, the learner
should be able to:
To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Group experiments- preparation of iron (II) sulphide by direct synthesis.
Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
Iron,
Sulphur |
K.L.B. BOOK II P. 104
|
|
7 | 1-2 |
SALTS
|
Ionic equations.
Effects of heat on carbonates. Effects of heat on nitrates. |
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c. Observe various colour changes before, during and after heating. Write equations for the reactions. |
PbNO3, MgSO4 solutions.
Various carbonates. Common metal nitrates. |
K.L.B. BOOK II
K.L.B. BOOK II PP. 108-109 |
|
7 | 3 |
SALTS
|
Effects of heat on sulphates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on sulphates. To predict products results from heating metal sulphates. |
Group experiments- To investigate effects of heat on various sulphates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common sulphates.
|
K.L.B. BOOK II P. 113
|
|
7 | 4 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
|
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. |
|
K.L.B. BOOK II P. 114
|
|
8 | 1-2 |
SALTS
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES. |
Uses of salts.
Electrical conductivity. Molten electrolytes. |
By the end of the
lesson, the learner
should be able to:
To state uses of salts To test for electrical conductivities molten electrolytes. |
Teacher elucidates uses of salts.
Group experiments- to identify electrolytes in molten form. Explain the difference in molten electrolytes. |
Various solids, bulb, battery, & wires.
Molten candle wax Sugar Sulphur Lead oxide. |
K.L.B. BOOK II P. 114
K.L.B. BOOK IIPP. 120-121 |
|
8 | 3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrolysis.
|
By the end of the
lesson, the learner
should be able to:
To define electrolysis To describe the process of electrolysis in terms of charge movement. |
Descriptive approach punctuated with Q/A.
|
|
K.L.B. BOOK II
|
|
8 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Aqueous electrolytes.
Electrodes.
|
By the end of the
lesson, the learner
should be able to:
To define an electrolyte To test for electrical conductivities of electrodes. |
To investigate chemical effect of an electric current.
Classify the solutions as electrolyte or non -electrolytes. Discuss the electrical properties of the solutions. |
Graphite electrodes
Battery Various aqueous solutions switch bulb. |
K.L.B. BOOK II PP.122-123
|
|
9 | 1-2 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Reaction on electrodes.
Binary electrolyte. |
By the end of the
lesson, the learner
should be able to:
To describe half- equation reactions at the cathode and anode To define a binary electrolyte. To state the products of a binary electrolyte. |
To demonstrate ?Electrolysis of molten lead (II) bromide
Observe colour changes Explanation of half-equations and reactions at the electrodes. Completing a table of electrolysis of binary electrolytes. |
Graphite electrodes
Battery Various aqueous solutions switch. text book |
K.L.B. BOOK II PP.126-127
K.L.B. BOOK II P.127 |
|
9 | 3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Application of electrolysis.
Electroplating. |
By the end of the
lesson, the learner
should be able to:
To state application of electrolysis. |
Discussion and explanations.
|
text book
Silver nitrate Iron nail Complete circuit battery. |
K.L.B. BOOK II P. 128
|
|
9 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
|
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. |
text book
|
K.L.B. BOOK II PP. 131-133
|
|
10 | 1-2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Physical and chemical properties of diamond, graphite and amorphous carbon
Burning carbon and oxygen. |
By the end of the
lesson, the learner
should be able to:
Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. Describe reaction of carbon with oxygen. |
Discuss physical and chemical properties of diamond, graphite and amorphous carbon.
Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater. |
Charcoal, graphite.
Carbon, limewater, tube, limewater stand& Bunsen burner. |
K.L.B. BOOK II pp 134
K.L.B. BOOK II PP. 134-135 |
|
10 | 3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
Reaction of carbon with acids. Preparation of CO2. |
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
Conc. HNO3, limewater. |
K.L.B. BOOK II P.126
|
|
10 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 |
Simple experiments to determine properties of CO2.
Discuss the observations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. |
K.L.B. BOOK II PP.138-139
|
|
11 | 1-2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical equations for reactions involving CO2.
Uses of CO2. |
By the end of the
lesson, the learner
should be able to:
Write balanced CO2. State uses of CO2 |
Give examples of reactions. Write corresponding balanced chemical equations.
Discuss briefly the uses of CO2. |
text book
|
K.L.B. BOOK II PP.139-140
K.L.B. BOOK II PP.140-1 |
|
11 | 3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbon monoxide lab preparation.
|
By the end of the
lesson, the learner
should be able to:
To describe preparation of carbon monoxide in the lab |
Teacher demonstration: preparation of carbon monoxide in the lab.
Make observations. |
text book
|
K.L.B. BOOK II PP. 142-143
|
|
11 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical properties of carbon monoxide.
Carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
To describe chemical properties of carbon monoxide. |
Description of properties of carbon monoxide.
Discussion and writing of chemical equations. |
text book
|
K.L.B. BOOK II PP. 144-145
|
|
12 | 1-2 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Heating carbonates and hydrogen carbonates.
Extraction of sodium carbonate from trona. |
By the end of the
lesson, the learner
should be able to:
To write equations for reaction of carbonates and hydrogen carbonates on heating. To draw schematic diagram for extraction of sodium carbonates. |
Discuss the above observations.
Write corresponding balanced equations. Discuss each step of the process. Write relevant equations. |
text book
|
K.L.B. BOOK II PP.150-151
K.L.B. BOOK II PP. 153-157 |
|
12 | 3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Solvay process of preparing sodium carbonate.
|
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book, chart
|
K.L.B. BOOK II
|
|
12 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Importance of carbon in nature.
& its
effects on the environment.
|
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. |
text book
|
K.L.B. BOOK II PP.157-158
|
Your Name Comes Here