Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 1
MEASUREMENTS
Time, Distance and Speed - Identifying Longitudes on the Globe
By the end of the lesson, the learner should be able to:

-Identify longitudes on a globe;
-Understand the concept of the prime meridian;
-Describe how longitudes are measured in degrees east or west;
-Show interest in understanding the globe and longitudes.
In groups, learners are guided to:
-Use a globe to identify circles that pass through North and South poles;
-Search from the Internet or print media for the meaning of these circles;
-Identify special circles on the globe (Prime Meridian, International Date Line);
-Discuss how longitudes are measured in degrees east or west of the Prime Meridian;
-Discuss and share findings with other groups.
Why does time vary in different places of the world?
-Mathematics learners book grade 9 page 131;
-Globe;
-World map showing longitudes;
-Digital devices for research;
-Charts showing the longitude system.
-Observation; -Oral questions; -Written exercises; -Group presentations.
1 2
MEASUREMENTS
Time, Distance and Speed - Relating Longitudes to Time on the Globe
By the end of the lesson, the learner should be able to:

-Understand the relationship between longitudes and time;
-Calculate the time difference between places on different longitudes;
-Identify places with the same local time;
-Appreciate the importance of longitudes in determining time.
In groups, learners are guided to:
-Discuss how the earth rotates 360° in 24 hours (15° per hour);
-Complete a table showing degrees of rotation for different time periods;
-Identify pairs of points on a globe that share the same local time;
-Understand that places on the same longitude have the same local time;
-Discuss and share findings with other groups.
How are longitudes related to time?
-Mathematics learners book grade 9 page 133;
-Globe;
-World map showing time zones;
-Digital devices for research;
-Charts showing the relationship between longitudes and time.
-Observation; -Oral questions; -Written exercises; -Group presentations.
1 3
MEASUREMENTS
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
By the end of the lesson, the learner should be able to:

-Calculate local time at different longitudes;
-Understand that time increases eastward and decreases westward;
-Solve problems involving local time at different longitudes;
-Show interest in understanding time zones.
In groups, learners are guided to:
-Review the relationship between longitudes and time;
-Calculate local time at different longitudes given the local time at a reference longitude;
-Understand that for every 15° change in longitude, time changes by 1 hour;
-Solve problems involving local time at different longitudes;
-Discuss and share results with other groups.
How do we calculate the local time at different longitudes?
-Mathematics learners book grade 9 page 134;
-Globe;
-World map showing time zones;
-Scientific calculators;
-Charts showing examples of local time calculations.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
1 4
MEASUREMENTS
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
By the end of the lesson, the learner should be able to:

-Calculate local time across the International Date Line;
-Solve complex problems involving local time at different longitudes;
-Apply knowledge of local time to real-life situations;
-Appreciate the practical applications of understanding local time.
In groups, learners are guided to:
-Review the calculation of local time at different longitudes;
-Understand the International Date Line and its effect on time/date;
-Calculate local time for places on opposite sides of the International Date Line;
-Solve complex problems involving local time at different longitudes;
-Discuss real-life applications such as international travel and communication;
-Discuss and share results with other groups.
How does the International Date Line affect time calculations?
-Mathematics learners book grade 9 page 136;
-Globe;
-World map showing time zones and the International Date Line;
-Scientific calculators;
-Charts showing examples of local time calculations.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
1 5
MEASUREMENTS
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
By the end of the lesson, the learner should be able to:

-Apply knowledge of local time to solve various problems;
-Convert between 12-hour and 24-hour time formats;
-Solve real-world problems involving time zones;
-Show genuine interest in understanding global time.
In groups, learners are guided to:
-Review calculations of local time at different longitudes;
-Convert between 12-hour (am/pm) and 24-hour time formats;
-Solve problems involving flight times, international calls, and global events;
-Use digital resources to explore current time in different parts of the world;
-Discuss and share results with other groups.
How do time zones affect international communication and travel?
-Mathematics learners book grade 9 page 137;
-Globe;
-World map showing time zones;
-Digital devices showing current time in different cities;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Project work on time zones.
2 1
MEASUREMENTS
Money - Identifying Currencies Used in Different Countries
By the end of the lesson, the learner should be able to:

-Identify currencies used in different countries;
-Match currencies with their respective countries;
-Recognize currency symbols;
-Show interest in learning about different currencies.
In groups, learners are guided to:
-Use digital devices to search and print pictures of currencies from: a) Neighboring countries b) Other African countries c) Common currencies used globally;
-Make a collage of different currencies on a piece of carton;
-Match currencies with their respective countries;
-Identify currency symbols (e.g., $, €, £, ¥);
-Display and present their collages to other groups.
Why do different countries use different currencies?
-Mathematics learners book grade 9 page 138;
-Digital devices for research;
-Pictures/samples of different currencies;
-Manila paper or carton;
-Charts showing currencies and their countries.
-Observation; -Oral questions; -Group presentations; -Assessment of currency collages.
2 2
MEASUREMENTS
Money - Identifying Currencies Used in Different Countries
By the end of the lesson, the learner should be able to:

-Identify currencies used in different countries;
-Match currencies with their respective countries;
-Recognize currency symbols;
-Show interest in learning about different currencies.
In groups, learners are guided to:
-Use digital devices to search and print pictures of currencies from: a) Neighboring countries b) Other African countries c) Common currencies used globally;
-Make a collage of different currencies on a piece of carton;
-Match currencies with their respective countries;
-Identify currency symbols (e.g., $, €, £, ¥);
-Display and present their collages to other groups.
Why do different countries use different currencies?
-Mathematics learners book grade 9 page 138;
-Digital devices for research;
-Pictures/samples of different currencies;
-Manila paper or carton;
-Charts showing currencies and their countries.
-Observation; -Oral questions; -Group presentations; -Assessment of currency collages.
2 3
MEASUREMENTS
Money - Converting Currency from One to Another in Real Life Situations
By the end of the lesson, the learner should be able to:

-Understand exchange rates;
-Convert foreign currency to Kenyan currency;
-Use exchange rate tables;
-Appreciate the concept of currency exchange.
In groups, learners are guided to:
-Study exchange rates of international currencies in a table;
-Understand the concept of buying and selling rates;
-Convert foreign currencies to Kenyan Shillings using the buying rate;
-Solve problems involving currency conversion;
-Use digital devices to compare exchange rates from different sources;
-Discuss and share results with other groups.
Why do we change currencies from one form to another?
-Mathematics learners book grade 9 page 141;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 4
MEASUREMENTS
Money - Converting Currency from One to Another in Real Life Situations
By the end of the lesson, the learner should be able to:

-Convert Kenyan currency to foreign currency;
-Use exchange rate tables to convert currencies;
-Solve problems involving currency conversion;
-Show interest in understanding international currency exchange.
In groups, learners are guided to:
-Review the concept of exchange rates;
-Understand that the selling rate is used when converting Kenyan Shillings to foreign currency;
-Convert Kenyan Shillings to various foreign currencies using the selling rate;
-Solve problems involving currency conversion;
-Discuss real-life situations where currency conversion is necessary;
-Discuss and share results with other groups.
How do exchange rates affect international trade?
-Mathematics learners book grade 9 page 142;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 5
MEASUREMENTS
Money - Working Out Export Duties Charged on Goods
By the end of the lesson, the learner should be able to:

-Define export duty;
-Calculate export duty on goods;
-Understand the purpose of export duties;
-Appreciate the role of export duties in international trade.
In groups, learners are guided to:
-Use digital devices to search for the meaning of export duty;
-Research the percentage of export duty on different goods in Kenya;
-Calculate export duty on goods using the formula: Export Duty = Value of Goods × Duty Rate;
-Solve problems involving export duties;
-Discuss the purpose and impact of export duties;
-Discuss and share findings with other groups.
What are the types of taxes the government levy on its citizens?
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Scientific calculators;
-Charts showing export duty rates;
-Examples of export scenarios.
-Observation; -Oral questions; -Written exercises; -Research presentation.
3 1
MEASUREMENTS
Money - Working Out Import Duties Charged on Goods
By the end of the lesson, the learner should be able to:

-Define import duty;
-Calculate import duty on goods;
-Identify goods exempted from import duty;
-Show interest in understanding import duties.
In groups, learners are guided to:
-Use digital devices to search for the meaning of import duty;
-Research the percentage of import duty on different goods and services;
-Identify examples of goods exempted from import duty in Kenya;
-Calculate import duty on goods using the formula: Import Duty = Customs Value × Duty Rate;
-Solve problems involving import duties;
-Discuss and share findings with other groups.
What are import duties and why are they charged?
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Scientific calculators;
-Charts showing import duty rates;
-Examples of import scenarios.
-Observation; -Oral questions; -Written exercises; -Research presentation.
3 2
MEASUREMENTS
Money - Working Out Excise Duty Charged on Goods
By the end of the lesson, the learner should be able to:

-Define excise duty;
-Identify goods and services that attract excise duty;
-Calculate excise duty on goods and services;
-Show interest in understanding taxation systems.
In groups, learners are guided to:
-Use digital devices to search for the meaning of excise duty;
-Research goods that attract excise duty;
-Research percentage of excise duty on goods and services;
-Calculate excise duty on various goods and services;
-Solve problems involving excise duty;
-Discuss and share findings with other groups.
What is excise duty and how is it different from other taxes?
-Mathematics learners book grade 9 page 145;
-Digital devices for research;
-Scientific calculators;
-Charts showing excise duty rates;
-Examples of goods subject to excise duty.
-Observation; -Oral questions; -Written exercises; -Research presentation.
3 3
MEASUREMENTS
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
By the end of the lesson, the learner should be able to:

-Define Value Added Tax (VAT);
-Identify goods and services that attract VAT;
-Calculate VAT on goods and services;
-Appreciate the role of VAT in government revenue collection.
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT;
-Research goods that attract VAT;
-Research the percentage of VAT charged on goods and services;
-Study receipts to identify VAT amounts;
-Calculate VAT on various goods and services;
-Discuss and share findings with other groups.
How is VAT calculated and why is it charged?
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT;
-Digital devices for research;
-Scientific calculators;
-Charts showing VAT calculations.
-Observation; -Oral questions; -Written exercises; -Analysis of receipts.
3 4
MEASUREMENTS
Approximations and Errors - Approximating Quantities in Measurements
By the end of the lesson, the learner should be able to:

-Approximate quantities using arbitrary units;
-Use strides, hand spans, and other body measurements to estimate lengths;
-Compare estimated values with actual measurements;
-Show interest in approximation techniques.
In groups, learners are guided to:
-Measure the lengths of their strides in centimeters;
-Measure the length of the classroom using strides;
-Estimate the length of the classroom in centimeters;
-Use hand spans to estimate lengths of various objects;
-Use thumb lengths to estimate smaller lengths;
-Discuss and share findings with other groups.
How do we estimate measurements of different quantities?
-Mathematics learners book grade 9 page 148;
-Measuring tapes/rulers;
-Various objects to measure;
-Charts showing conventional and arbitrary units;
-Open space for measuring with strides.
-Observation; -Oral questions; -Practical assessment; -Group presentations.
3 5
MEASUREMENTS
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
By the end of the lesson, the learner should be able to:

-Define error in measurements;
-Determine errors by comparing estimated and actual measurements;
-Calculate absolute errors in measurements;
-Develop genuine interest in understanding measurement errors.
In groups, learners are guided to:
-Estimate the measurements of various items in centimeters;
-Use a ruler to find the actual measurements of the items;
-Find the difference between the estimated and measured values;
-Understand that error = measured value - estimated value;
-Complete a table with estimated values, measured values, and errors;
-Discuss and share findings with other groups.
How do we determine errors in measurements?
-Mathematics learners book grade 9 page 149;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Practical assessment.
4 1
MEASUREMENTS
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
By the end of the lesson, the learner should be able to:

-Define percentage error;
-Calculate percentage error in measurements;
-Interpret the meaning of percentage error;
-Show interest in minimizing errors in measurements.
In groups, learners are guided to:
-Review the concept of error in measurements;
-Express error as a ratio of the actual value;
-Convert the ratio to a percentage to find percentage error;
-Calculate percentage error using the formula: Percentage Error = (Error/Actual Value) × 100%;
-Solve problems involving percentage error;
-Discuss and share findings with other groups.
Why is percentage error more useful than absolute error?
-Mathematics learners book grade 9 page 151;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
4 2
MEASUREMENTS
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
By the end of the lesson, the learner should be able to:

-Define percentage error;
-Calculate percentage error in measurements;
-Interpret the meaning of percentage error;
-Show interest in minimizing errors in measurements.
In groups, learners are guided to:
-Review the concept of error in measurements;
-Express error as a ratio of the actual value;
-Convert the ratio to a percentage to find percentage error;
-Calculate percentage error using the formula: Percentage Error = (Error/Actual Value) × 100%;
-Solve problems involving percentage error;
-Discuss and share findings with other groups.
Why is percentage error more useful than absolute error?
-Mathematics learners book grade 9 page 151;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
4 3
Data Handling and Probability
Data Interpretation - Appropriate class width
By the end of the lesson, the learner should be able to:

Determine appropriate class width for grouping data;
Work with data to establish suitable class widths;
Appreciate the importance of appropriate class widths in data representation.
Learners work in groups to consider masses of 40 people in kilograms.
Learners find the difference between the smallest and highest mass (range).
Learners group the masses in smaller groups with different class widths and identify the number of groups formed in each case.
How do we determine an appropriate class width for a given set of data?
-KLB Mathematics Grade 9 Textbook page 244
-Calculator
-Graph paper
-Manila paper
-Rulers
-Colored markers
-Oral questions -Group presentations -Written exercise -Observation
4 4
Data Handling and Probability
Data Interpretation - Finding range and creating groups
By the end of the lesson, the learner should be able to:

Calculate the range of a set of data;
Divide data into suitable class intervals;
Show interest in grouping data for better representation.
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data.
Learners complete a table using a class width of 10 and determine the number of classes formed.
How does the range of data help us determine appropriate class intervals?
-KLB Mathematics Grade 9 Textbook page 245
-Calculator
-Manila paper
-Data sets
-Chart with examples
-Colored markers
-Oral questions -Written exercise -Observation -Group work assessment
4 5
Data Handling and Probability
Data Interpretation - Frequency distribution tables
By the end of the lesson, the learner should be able to:

Draw frequency distribution tables of grouped data;
Use tally marks to organize data into frequency tables;
Value the importance of organizing data in tables.
Learners are presented with data on the number of tree seedlings that survived in 50 different schools.
Learners copy and complete a frequency distribution table using tally marks and frequencies.
Learners discuss and share their completed tables with other groups.
How do we organize data in a frequency distribution table?
-KLB Mathematics Grade 9 Textbook page 247
-Chart paper
-Ruler
-Calculator
-Manila paper
-Colored markers
-Oral questions -Group presentations -Written exercise -Checklist
5 1
Data Handling and Probability
Data Interpretation - Creating frequency tables with different class intervals
By the end of the lesson, the learner should be able to:

Construct frequency tables starting with different class intervals;
Use tally marks to represent data in frequency tables;
Appreciate the use of different class intervals in data representation.
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class.
Learners compare and discuss different frequency tables.
How do we choose appropriate starting points for class intervals?
-KLB Mathematics Grade 9 Textbook page 247
-Calculator
-Ruler
-Graph paper
-Manila paper
-Worksheets with data
-Oral questions -Written exercise -Group presentations -Observation
5 2
Data Handling and Probability
Data Interpretation - Modal class
By the end of the lesson, the learner should be able to:

Identify the modal class of grouped data;
Determine the class with the highest frequency;
Develop interest in finding the modal class in real-life data.
Learners are presented with assessment marks in a mathematics test for 32 learners.
Learners draw a frequency distribution table to represent the information.
Learners identify and write down the class with the highest frequency (modal class).
What is the modal class and how is it determined?
-KLB Mathematics Grade 9 Textbook page 248
-Calculator
-Ruler
-Graph paper
-Chart showing frequency distribution tables
-Colored markers
-Oral questions -Group work -Written exercise -Peer assessment
5 3
Data Handling and Probability
Data Interpretation - Mean of ungrouped data
By the end of the lesson, the learner should be able to:

Calculate the mean of ungrouped data in a frequency table;
Multiply each value by its frequency and find their sum;
Show interest in calculating mean in real-life situations.
Learners consider the height, in metres, of 10 people recorded in a frequency distribution table.
Learners complete a table showing the product of height and frequency (fx).
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of data presented in a frequency table?
-KLB Mathematics Grade 9 Textbook page 249
-Calculator
-Chart showing frequency tables
-Worksheets
-Manila paper
-Colored markers
-Oral questions -Written exercise -Observation -Assessment rubrics
5 4
Data Handling and Probability
Data Interpretation - Mean of grouped data
By the end of the lesson, the learner should be able to:

Calculate the mean of grouped data;
Find the midpoint of class intervals and use in calculations;
Value the importance of mean in summarizing data.
Learners consider a frequency distribution table representing masses in kilograms of learners in a class.
Learners complete a table by finding midpoints of class intervals and calculating fx.
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of grouped data?
-KLB Mathematics Grade 9 Textbook page 250
-Calculator
-Graph paper
-Manila paper
-Chart with examples
-Worksheets
-Oral questions -Written exercise -Group presentations -Checklist
5 5
Data Handling and Probability
Data Interpretation - Mean calculation in real-life situations
By the end of the lesson, the learner should be able to:

Calculate the mean of grouped data from real-life situations;
Apply the formula for finding mean of grouped data;
Appreciate the use of mean in summarizing data in real life.
Learners are presented with data about plants that survived in 50 sampled schools during an environmental week.
Learners find midpoints of class intervals, multiply by frequencies, and sum them up.
Learners calculate the mean number of plants that survived by dividing the sum of fx by the sum of f.
How is the mean used to summarize real-life data?
-KLB Mathematics Grade 9 Textbook page 251
-Calculator
-Manila paper
-Chart with examples
-Worksheets
-Colored markers
-Oral questions -Group work -Written exercise -Assessment rubrics
6 1
Data Handling and Probability
Data Interpretation - Median of grouped data
By the end of the lesson, the learner should be able to:

Determine the median of grouped data;
Find cumulative frequencies to locate the median class;
Value the importance of median in data interpretation.
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency.
Learners find the sum of frequency, divide by 2, and identify the position of the median mass.
How do we determine the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 252
-Calculator
-Chart showing cumulative frequency tables
-Worksheets
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Observation
6 2
Data Handling and Probability
Data Interpretation - Median of grouped data
By the end of the lesson, the learner should be able to:

Determine the median of grouped data;
Find cumulative frequencies to locate the median class;
Value the importance of median in data interpretation.
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency.
Learners find the sum of frequency, divide by 2, and identify the position of the median mass.
How do we determine the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 252
-Calculator
-Chart showing cumulative frequency tables
-Worksheets
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Observation
6 3
Data Handling and Probability
Data Interpretation - Calculating median using formula
By the end of the lesson, the learner should be able to:

Apply the formula for calculating median of grouped data;
Identify class boundaries, frequencies, and cumulative frequencies;
Show interest in finding median from real-life data.
Learners consider marks scored by 40 learners in a test presented in a table.
Learners complete the column for cumulative frequency and identify the median class.
Learners identify the lower class boundary, cumulative frequency above median class, class width, and frequency of median class to substitute in the formula.
How do we use the formula to calculate the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 253
-Calculator
-Graph paper
-Chart showing median formula
-Worksheets
-Manila paper
-Oral questions -Written exercise -Group work assessment -Assessment rubrics
6 4
Data Handling and Probability
Data Interpretation - Median calculations in real-life situations
By the end of the lesson, the learner should be able to:

Calculate median in real-life data situations;
Apply the median formula to various data sets;
Appreciate the role of median in data interpretation.
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class.
Learners apply the median formula to calculate the median value.
How is the median used to interpret real-life data?
-KLB Mathematics Grade 9 Textbook page 254
-Calculator
-Chart with example calculations
-Worksheets with real-life data
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Peer assessment
6 5
Data Handling and Probability
Probability - Equally likely outcomes
By the end of the lesson, the learner should be able to:

Perform experiments involving equally likely outcomes;
Record outcomes of chance experiments;
Appreciate that some events have equal chances of occurring.
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up.
Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities.
What makes events equally likely to occur?
-KLB Mathematics Grade 9 Textbook page 256
-Coins
-Chart paper
-Table for recording outcomes
-Manila paper
-Colored markers
-Oral questions -Practical activity -Group work assessment -Observation
7 1
Data Handling and Probability
Probability - Range of probability
By the end of the lesson, the learner should be able to:

Determine the range of probability of an event;
Understand that probability ranges from 0 to 1;
Value the concept of probability range in real-life situations.
Learners use a fair die in this activity and toss it 20 times.
Learners record the number of times each face shows up and calculate relative frequencies.
Learners find the sum of the fractions and discuss that probabilities range from 0 to 1.
What is the range of probability values and what do these values signify?
-KLB Mathematics Grade 9 Textbook page 257
-Dice
-Table for recording outcomes
-Chart showing probability scale (0-1)
-Manila paper
-Colored markers
-Oral questions -Practical activity -Written exercise -Group presentations
7 2
Data Handling and Probability
Probability - Complementary events
By the end of the lesson, the learner should be able to:

Calculate probability of complementary events;
Understand that sum of probabilities of complementary events is 1;
Show interest in applying complementary probability in real-life situations.
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement.
Learners verify that the sum of probabilities of an event and its complement equals 1.
How are complementary events related in terms of their probabilities?
-KLB Mathematics Grade 9 Textbook page 258
-Calculator
-Chart showing complementary events
-Worksheets with problems
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group work assessment -Observation
7 3
Data Handling and Probability
Probability - Mutually exclusive events
By the end of the lesson, the learner should be able to:

Identify mutually exclusive events in real-life situations;
Recognize events that cannot occur simultaneously;
Appreciate the concept of mutually exclusive events.
Learners flip a fair coin several times and record the face that shows up.
Learners discuss that heads and tails cannot show up at the same time (mutually exclusive).
Learners identify mutually exclusive events from various examples.
What makes events mutually exclusive?
-KLB Mathematics Grade 9 Textbook page 258
-Coins
-Chart with examples of mutually exclusive events
-Flashcards with different scenarios
-Manila paper
-Colored markers
-Oral questions -Group discussions -Written exercise -Observation
7 4
Data Handling and Probability
Probability - Experiments with mutually exclusive events
By the end of the lesson, the learner should be able to:

Perform experiments of single chance involving mutually exclusive events;
Calculate probability of mutually exclusive events;
Value the application of mutually exclusive events in real-life.
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box.
Learners find probabilities of individual events and their union.
How do we calculate the probability of mutually exclusive events?
-KLB Mathematics Grade 9 Textbook page 259
-Dice
-Colored objects in boxes
-Calculator
-Chart showing probability calculations
-Worksheets with problems
-Oral questions -Practical activity -Written exercise -Assessment rubrics
7 5
Data Handling and Probability
Probability - Independent events
By the end of the lesson, the learner should be able to:

Perform experiments involving independent events;
Understand that outcome of one event doesn't affect another;
Show interest in applying independent events probability in real-life.
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times.
Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence).
What makes events independent from each other?
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice
-Table for recording outcomes
-Chart showing examples of independent events
-Manila paper
-Colored markers
-Oral questions -Practical activity -Group discussions -Observation
8 1
Data Handling and Probability
Probability - Calculating probabilities of independent events
By the end of the lesson, the learner should be able to:

Calculate probabilities of independent events;
Apply the multiplication rule for independent events;
Appreciate the application of independent events in real-life situations.
Learners solve problems involving independent events.
Learners calculate probabilities of individual events and multiply them to find joint probability.
Learners solve problems involving machines breaking down independently and other real-life examples.
How do we calculate the probability of independent events occurring together?
-KLB Mathematics Grade 9 Textbook page 261
-Calculator
-Chart showing multiplication rule
-Worksheets with problems
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Assessment rubrics
8 2
Data Handling and Probability
Probability - Calculating probabilities of independent events
By the end of the lesson, the learner should be able to:

Calculate probabilities of independent events;
Apply the multiplication rule for independent events;
Appreciate the application of independent events in real-life situations.
Learners solve problems involving independent events.
Learners calculate probabilities of individual events and multiply them to find joint probability.
Learners solve problems involving machines breaking down independently and other real-life examples.
How do we calculate the probability of independent events occurring together?
-KLB Mathematics Grade 9 Textbook page 261
-Calculator
-Chart showing multiplication rule
-Worksheets with problems
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Assessment rubrics
8 3
Data Handling and Probability
Probability - Tree diagrams for single outcomes
By the end of the lesson, the learner should be able to:

Draw a probability tree diagram for a single outcome;
Represent probability situations using tree diagrams;
Value the use of tree diagrams in organizing probability information.
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome.
Learners complete a tree diagram with possible outcomes and their probabilities.
How do tree diagrams help us understand probability situations?
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper
-Ruler
-Worksheets with blank tree diagrams
-Chart showing completed tree diagrams
-Colored markers
-Oral questions -Practical activity -Group work assessment -Checklist
8 4
Data Handling and Probability
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Draw more complex probability tree diagrams;
Use tree diagrams to solve probability problems;
Appreciate the value of tree diagrams in visualizing probability.
Learners draw tree diagrams for various probability scenarios like balls of different colors in a bag.
Learners use tree diagrams to find probabilities of different outcomes.
Learners interpret tree diagrams to solve probability problems.
How do we use tree diagrams to solve more complex probability problems?
-KLB Mathematics Grade 9 Textbook page 263
-Chart paper
-Ruler
-Calculator
-Chart showing complex tree diagrams
-Worksheets with problems
-Colored markers
-Oral questions -Written exercise -Group presentations -Assessment rubrics
8 5
Data Handling and Probability
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Your Name Comes Here


Download

Feedback