Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 1
Geometry
Scale Drawing - Compass directions
By the end of the lesson, the learner should be able to:

Identify compass and true bearings in real-life situations;
Draw and discuss the compass directions;
Appreciate the use of compass in navigation.
Learners carry out an activity outside the classroom where a member stands with hands spread out.
Learners draw a diagram showing the directions of the right hand, left hand, front, and back, labeling them in terms of North, South, East, and West.
Learners discuss situations where knowledge of compass direction is used.
How do we use compass directions to locate positions?
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass
-Plain paper
-Colored pencils
-Charts showing compass directions
-Maps
-Oral questions -Practical activity -Written exercise -Observation
1 2
Geometry
Scale Drawing - Compass bearings
By the end of the lesson, the learner should be able to:

Identify compass bearings in different situations;
Measure and state positions using compass bearings;
Value the importance of compass bearings in navigation.
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles.
Learners draw accurately various compass bearings like N70°E, S50°W, etc.
How do we express directions using compass bearings?
-KLB Mathematics Grade 9 Textbook page 170
-Protractor
-Ruler
-Plain paper
-Charts showing compass bearings
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
1 3
Geometry
Scale Drawing - True bearings
By the end of the lesson, the learner should be able to:

Identify true bearings in real-life situations;
Draw and measure true bearings;
Appreciate the difference between compass and true bearings.
Learners trace diagrams showing true bearings.
Learners measure angles from North in the clockwise direction.
Learners draw accurately true bearings such as 008°, 036°, 126°, etc.
What is the difference between compass bearings and true bearings?
-KLB Mathematics Grade 9 Textbook page 171
-Protractor
-Ruler
-Plain paper
-Charts showing true bearings
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Assessment rubrics
1 4
Geometry
Scale Drawing - Determining compass bearings
By the end of the lesson, the learner should be able to:

Determine the bearing of one point from another;
Measure angles to determine compass bearings;
Enjoy determining bearings in different situations.
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR.
Learners use the angle to write down the compass bearing of R from Q and discuss their results.
How do we determine the compass bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 173
-Protractor
-Ruler
-Plain paper
-Charts with bearing examples
-Manila paper for group work
-Oral questions -Group work -Written exercise -Observation
1 5
Geometry
Scale Drawing - Determining true bearings
By the end of the lesson, the learner should be able to:

Determine true bearings in different situations;
Measure angles to find true bearings;
Value the use of true bearings in navigation.
Learners consider a diagram showing points C and D.
Learners identify and determine the bearing of D from C by measurement.
Learners measure the bearing of various points in different diagrams.
How do we determine the true bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 175
-Protractor
-Ruler
-Plain paper
-Worksheets with diagrams
-Charts with bearing examples
-Oral questions -Practical activity -Written exercise -Checklist
2 1
Geometry
Scale Drawing - Locating points using compass bearing and distance
By the end of the lesson, the learner should be able to:

Locate a point using bearing and distance in real-life situations;
Create scale drawings showing relative positions;
Appreciate the use of scale drawings in real-life situations.
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U.
Learners display and discuss their constructions.
How do we use compass bearings and distances to locate positions?
-KLB Mathematics Grade 9 Textbook page 178
-Protractor
-Ruler
-Plain paper
-Drawing board
-Charts with examples
-Worksheets
-Oral questions -Practical activity -Written exercise -Peer assessment
2 2
Geometry
Scale Drawing - Locating points using true bearing and distance
By the end of the lesson, the learner should be able to:

Locate a point using true bearing and distance;
Create scale drawings showing relative positions;
Enjoy making scale drawings using bearings and distances.
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A.
Learners make scale drawings showing the relative positions of multiple points.
How do we use true bearings and distances to create scale drawings?
-KLB Mathematics Grade 9 Textbook page 182
-Protractor
-Ruler
-Plain paper
-Drawing board
-Manila paper for presentations
-Worksheets
-Oral questions -Practical activity -Written exercise -Observation
2 3
Geometry
Scale Drawing - Angle of elevation
By the end of the lesson, the learner should be able to:

Identify angles of elevation in real-life situations;
Make and use a clinometer to measure angles of elevation;
Appreciate the application of angles of elevation in real-life situations.
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects.
Learners make a clinometer and use it to measure angles of elevation of objects in the school environment.
What is an angle of elevation and how do we measure it?
-KLB Mathematics Grade 9 Textbook page 186
-Protractor
-String
-Weight (about 25g)
-Cardboard
-Straight piece of wood
-Charts showing angles of elevation
-Oral questions -Practical activity -Written exercise -Project assessment
2 4
Geometry
Scale Drawing - Determining angles of elevation
By the end of the lesson, the learner should be able to:

Determine angles of elevation in different situations;
Use scale drawings to find angles of elevation;
Value the use of scale drawings in solving problems involving elevation.
Learners consider a flag pole AB that is 8 m high with point C on level ground 18 m from the foot of the pole.
Learners make a scale drawing showing A, B, and C using a scale of 1 cm represents 2 m.
Learners measure the angle between AC and CB and display their drawings.
How can we use scale drawings to determine angles of elevation?
-KLB Mathematics Grade 9 Textbook page 187
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts showing examples
-Oral questions -Scale drawing -Written exercise -Presentation
2 5
Geometry
Scale Drawing - Angle of depression
By the end of the lesson, the learner should be able to:

Identify angles of depression in real-life situations;
Measure angles of depression using a clinometer;
Appreciate the application of angles of depression in real-life situations.
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects.
Learners use a clinometer to measure angles of depression of objects in their environment.
What is an angle of depression and how is it related to the angle of elevation?
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson)
-String
-Weight
-Protractor
-Charts showing angles of depression
-Diagrams
-Oral questions -Practical activity -Written exercise -Observation
3 1
Geometry
Scale Drawing - Determining angles of depression
By the end of the lesson, the learner should be able to:

Determine angles of depression in different situations;
Use scale drawings to find angles of depression;
Enjoy solving problems involving angles of depression.
Learners consider a stationary boat (B) that is 120 m away from the foot (F) of a cliff of height 80 m.
Learners make a scale drawing showing the positions of A, F, and B using a scale of 1 cm represents 20 m.
Learners measure the angle between the horizontal line passing through A and line AB to find the angle of depression.
How can we use scale drawings to determine angles of depression?
-KLB Mathematics Grade 9 Textbook page 192
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
3 2
Geometry
Scale Drawing - Application in simple surveying
By the end of the lesson, the learner should be able to:

Apply scale drawing in simple surveying;
Record measurements in a field book;
Value the importance of surveying in mapping.
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island.
Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book.
How do surveyors use scale drawings to create maps?
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper
-Ruler
-Set square
-Pencil
-Field book (notebook)
-Charts with survey examples
-Oral questions -Practical activity -Written exercise -Field book assessment
3 3
Geometry
Scale Drawing - Survey using bearings and distances
By the end of the lesson, the learner should be able to:

Survey an area using bearings and distances;
Create scale drawings from bearing and distance data;
Appreciate the application of bearings in surveying.
Learners study a sketch of a piece of land with positions given in terms of bearings and distances from point A.
Learners mark point A and use the bearings and distances to locate other points.
Learners create scale drawings of areas described by bearings and distances from given tables.
How do surveyors use bearings and distances to map areas?
-KLB Mathematics Grade 9 Textbook page 199
-Protractor
-Ruler
-Plain paper
-Drawing board
-Field book
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Presentation
3 4
Geometry
Scale Drawing - Complex surveying problems
By the end of the lesson, the learner should be able to:

Solve complex surveying problems involving bearings and distances;
Create scale drawings of multiple points and features;
Show interest in scale drawing applications in real-life.
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings.
Learners discuss real-life applications of scale drawing in surveying and navigation.
How do we determine unknown distances and bearings using scale drawing?
-KLB Mathematics Grade 9 Textbook page 202
-Protractor
-Ruler
-Drawing paper
-Calculator
-Maps
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
3 5
Geometry
Scale Drawing - Project work on scale drawing
By the end of the lesson, the learner should be able to:

Apply scale drawing techniques to a real-life situation;
Create a scale map of the school compound or local area;
Appreciate the practical applications of scale drawing.
Learners work in groups to create a scale map of a part of the school compound.
Learners measure distances and determine bearings between key features.
Learners create a detailed scale drawing with a key showing the various features mapped.
How can we apply scale drawing techniques to map our environment?
-KLB Mathematics Grade 9 Textbook page 202
-Measuring tape
-Compass
-Drawing paper
-Colored pencils
-Manila paper
-Drawing instruments
-Project work -Group presentation -Peer assessment -Observation
4 1
Geometry
Similarity and Enlargement - Similar figures and properties
By the end of the lesson, the learner should be able to:

Identify similar figures and their properties;
Measure corresponding sides and angles of similar figures;
Appreciate the concept of similarity in real-life objects.
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them.
Learners measure all the corresponding angles and discover that they are equal.
What makes two figures similar?
-KLB Mathematics Grade 9 Textbook page 203
-Ruler
-Protractor
-Cut-out shapes
-Charts showing similar figures
-Manila paper
-Oral questions -Observation -Written exercise -Checklist
4 2
Geometry
Similarity and Enlargement - Identifying similar objects
By the end of the lesson, the learner should be able to:

Identify similar objects in the environment;
Determine if given figures are similar;
Value the concept of similarity in everyday life.
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams.
Learners discuss real-life examples of similar objects and their properties.
How do we recognize similar objects in our environment?
-KLB Mathematics Grade 9 Textbook page 204
-Ruler
-Protractor
-Various geometric objects
-Charts with examples
-Worksheets with diagrams
-Oral questions -Group work -Written exercise -Observation
4 3
Geometry
Similarity and Enlargement - Drawing similar figures
Similarity and Enlargement - Properties of enlargement
By the end of the lesson, the learner should be able to:

Draw similar figures in different situations;
Calculate dimensions of similar figures using scale factors;
Enjoy creating similar figures.
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions.
Learners construct triangle PQR and compare results with other groups.
How do we construct a figure similar to a given figure?
-KLB Mathematics Grade 9 Textbook page 206
-Ruler
-Protractor
-Pair of compasses
-Drawing paper
-Calculator
-Charts with examples
-KLB Mathematics Grade 9 Textbook page 209
-Tracing paper
-Colored pencils
-Grid paper
-Charts showing enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Assessment rubrics
4 4
Geometry
Similarity and Enlargement - Negative scale factors
By the end of the lesson, the learner should be able to:

Determine properties of enlargement with negative scale factors;
Locate centers of enlargement with negative scale factors;
Appreciate the concept of negative scale factors in enlargements.
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement.
Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object.
What happens when an enlargement has a negative scale factor?
-KLB Mathematics Grade 9 Textbook page 211
-Ruler
-Tracing paper
-Grid paper
-Colored pencils
-Charts showing negative scale factor enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Checklist
4 5
Geometry
Similarity and Enlargement - Drawing images of objects
By the end of the lesson, the learner should be able to:

Apply properties of enlargement to draw similar objects and their images;
Use scale factors to determine dimensions of images;
Enjoy creating enlarged images of objects.
Learners trace a given figure and join the center of enlargement to each vertex.
Learners multiply each distance by the scale factor to locate the image points.
Learners locate the image points and join them to create the enlarged figure.
How do we draw the image of an object under an enlargement with a given center and scale factor?
-KLB Mathematics Grade 9 Textbook page 214
-Ruler
-Grid paper
-Colored pencils
-Charts showing steps of enlargement
-Manila paper
-Oral questions -Practical activity -Written exercise -Peer assessment
5 1
Geometry
Similarity and Enlargement - Linear scale factor
By the end of the lesson, the learner should be able to:

Determine the linear scale factor of similar figures;
Calculate unknown dimensions using linear scale factors;
Value the application of linear scale factors in real-life problems.
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor.
Learners use the scale factor to find unknown dimensions of similar figures.
How do we use linear scale factors to calculate unknown dimensions of similar figures?
-KLB Mathematics Grade 9 Textbook page 216
-Ruler
-Calculator
-Similar objects of different sizes
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Assessment rubrics
5 2
Geometry
Similarity and Enlargement - Using coordinates in enlargement
By the end of the lesson, the learner should be able to:

Find the coordinates of images under enlargement;
Determine the center of enlargement and scale factor from given coordinates;
Appreciate the use of coordinates in describing enlargements.
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points.
Learners calculate the scale factor using the coordinates of corresponding points.
How do we use coordinate geometry to describe and perform enlargements?
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper
-Ruler
-Colored pencils
-Calculator
-Charts with coordinate examples
-Oral questions -Practical activity -Written exercise -Observation
5 3
Geometry
Similarity and Enlargement - Applications of similarity
By the end of the lesson, the learner should be able to:

Apply similarity concepts to solve real-life problems;
Calculate heights and distances using similar triangles;
Value the practical applications of similarity in everyday life.
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering.
Learners work on practical applications of similarity in the environment.
How can we use similarity to solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 219
-Ruler
-Calculator
-Drawing paper
-Charts with real-life applications
-Manila paper for presentations
-Oral questions -Problem-solving -Written exercise -Group presentation
5 4
Geometry
Trigonometry - Angles and sides of right-angled triangles
By the end of the lesson, the learner should be able to:

Identify angles and sides of right-angled triangles in different situations;
Distinguish between the hypotenuse, adjacent side, and opposite side;
Appreciate the relationship between angles and sides in right-angled triangles.
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side).
Learners identify the side facing the angle θ (opposite side).
How do we identify different sides in a right-angled triangle?
-KLB Mathematics Grade 9 Textbook page 220
-Ruler
-Protractor
-Set square
-Drawing paper
-Charts with labeled triangles
-Colored markers
-Oral questions -Observation -Written exercise -Checklist
5 5
Geometry
Trigonometry - Sine ratio
By the end of the lesson, the learner should be able to:

Identify sine ratio from a right-angled triangle;
Calculate sine of angles in right-angled triangles;
Value the use of sine ratio in solving problems.
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths.
Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio.
What is the sine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 222
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing sine ratio
-Manila paper
-Oral questions -Practical activity -Written exercise -Assessment rubrics
6 1
Geometry
Trigonometry - Cosine ratio
By the end of the lesson, the learner should be able to:

Identify cosine ratio from a right-angled triangle;
Calculate cosine of angles in right-angled triangles;
Enjoy solving problems involving cosine ratio.
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio.
Learners find the cosine of marked angles in various right-angled triangles.
What is the cosine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 223
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing cosine ratio
-Worksheets
-Oral questions -Practical activity -Written exercise -Observation
6 2
Geometry
Trigonometry - Tangent ratio
By the end of the lesson, the learner should be able to:

Identify tangent ratio from a right-angled triangle;
Calculate tangent of angles in right-angled triangles;
Appreciate the importance of tangent ratio in problem-solving.
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths.
Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio.
What is the tangent of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 225
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing tangent ratio
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
6 3
Geometry
Trigonometry - Reading tables of sines
By the end of the lesson, the learner should be able to:

Read tables of trigonometric ratios of acute angles;
Find the sine values of different angles using tables;
Value the importance of mathematical tables in finding trigonometric ratios.
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values.
Learners find sine values of angles with decimal parts using the 'ADD' column in the tables.
How do we use mathematical tables to find the sine of an angle?
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Assessment rubrics
6 4
Geometry
Trigonometry - Reading tables of cosines and tangents
By the end of the lesson, the learner should be able to:

Read tables of cosines and tangents for acute angles;
Find cosine and tangent values using mathematical tables;
Enjoy using mathematical tables to find trigonometric ratios.
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles.
Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents.
How do we use mathematical tables to find cosine and tangent values?
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Observation
6 5
Geometry
Trigonometry - Using calculators for trigonometric ratios
By the end of the lesson, the learner should be able to:

Determine trigonometric ratios of acute angles using calculators;
Compare values obtained from tables and calculators;
Value the use of calculators in finding trigonometric ratios.
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables.
Learners use calculators to find sine, cosine, and tangent of various angles.
How do we use calculators to find trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators
-Mathematical tables
-Worksheets
-Chart showing calculator keys
-Sample exercises
-Oral questions -Practical activity -Written exercise -Checklist
7 1
Geometry
Trigonometry - Calculating lengths using trigonometric ratios
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to calculate lengths of right-angled triangles;
Use sine, cosine, and tangent ratios to find unknown sides;
Appreciate the application of trigonometry in solving real-life problems.
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side.
Learners solve problems involving finding sides of right-angled triangles.
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Assessment rubrics
7 2
Geometry
Trigonometry - Calculating angles using trigonometric ratios
By the end of the lesson, the learner should be able to:

Use trigonometric ratios to calculate angles in right-angled triangles;
Apply inverse trigonometric functions to find angles;
Enjoy solving problems involving trigonometric ratios.
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles.
Learners solve problems involving finding angles in right-angled triangles.
How do we find unknown angles in right-angled triangles using trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Observation
7 3
Geometry
Trigonometry - Application in heights and distances
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to solve problems involving heights and distances;
Calculate heights of objects using angles of elevation;
Value the use of trigonometry in real-life situations.
Learners solve problems involving finding heights of objects like flag poles, towers, and buildings using angles of elevation.
Learners apply sine, cosine, and tangent ratios as appropriate to calculate unknown heights and distances.
Learners discuss real-life applications of trigonometry in architecture, navigation, and engineering.
How do we use trigonometry to find heights and distances in real-life situations?
-KLB Mathematics Grade 9 Textbook page 237
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with real-life examples
-Manila paper
-Oral questions -Problem-solving -Written exercise -Group presentation
7 4
Geometry
Trigonometry - Application in navigation
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios in navigation problems;
Calculate distances and bearings using trigonometry;
Appreciate the importance of trigonometry in navigation.
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios.
Learners discuss how pilots, sailors, and navigators use trigonometry.
How is trigonometry used in navigation and determining positions?
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Maps
-Charts with navigation examples
-Oral questions -Problem-solving -Written exercise -Assessment rubrics
7 5
Geometry
Trigonometry - Review and mixed applications
By the end of the lesson, the learner should be able to:

Apply trigonometric concepts in mixed application problems;
Solve problems involving both scale drawing and trigonometry;
Value the integration of different geometric concepts in problem-solving.
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems.
Learners discuss how different geometric concepts interconnect in solving real-world problems.
How can we integrate different geometric concepts to solve complex problems?
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Drawing paper
-Past examination questions
-Oral questions -Problem-solving -Written exercise -Assessment test
8

REVISING OF PAST PAPERS

9

END TERM EXAM


Your Name Comes Here


Download

Feedback