Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 2
MEASUREMENTS
Time, Distance and Speed - Identifying Longitudes on the Globe
By the end of the lesson, the learner should be able to:

-Identify longitudes on a globe;
-Understand the concept of the prime meridian;
-Describe how longitudes are measured in degrees east or west;
-Show interest in understanding the globe and longitudes.
In groups, learners are guided to:
-Use a globe to identify circles that pass through North and South poles;
-Search from the Internet or print media for the meaning of these circles;
-Identify special circles on the globe (Prime Meridian, International Date Line);
-Discuss how longitudes are measured in degrees east or west of the Prime Meridian;
-Discuss and share findings with other groups.
Why does time vary in different places of the world?
-Mathematics learners book grade 9 page 131;
-Globe;
-World map showing longitudes;
-Digital devices for research;
-Charts showing the longitude system.
-Observation; -Oral questions; -Written exercises; -Group presentations.
1 3
MEASUREMENTS
Time, Distance and Speed - Relating Longitudes to Time on the Globe
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
By the end of the lesson, the learner should be able to:

-Understand the relationship between longitudes and time;
-Calculate the time difference between places on different longitudes;
-Identify places with the same local time;
-Appreciate the importance of longitudes in determining time.
In groups, learners are guided to:
-Discuss how the earth rotates 360° in 24 hours (15° per hour);
-Complete a table showing degrees of rotation for different time periods;
-Identify pairs of points on a globe that share the same local time;
-Understand that places on the same longitude have the same local time;
-Discuss and share findings with other groups.
How are longitudes related to time?
-Mathematics learners book grade 9 page 133;
-Globe;
-World map showing time zones;
-Digital devices for research;
-Charts showing the relationship between longitudes and time.
-Mathematics learners book grade 9 page 134;
-Scientific calculators;
-Charts showing examples of local time calculations.
-Observation; -Oral questions; -Written exercises; -Group presentations.
1 4
MEASUREMENTS
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
By the end of the lesson, the learner should be able to:

-Calculate local time across the International Date Line;
-Solve complex problems involving local time at different longitudes;
-Apply knowledge of local time to real-life situations;
-Appreciate the practical applications of understanding local time.
In groups, learners are guided to:
-Review the calculation of local time at different longitudes;
-Understand the International Date Line and its effect on time/date;
-Calculate local time for places on opposite sides of the International Date Line;
-Solve complex problems involving local time at different longitudes;
-Discuss real-life applications such as international travel and communication;
-Discuss and share results with other groups.
How does the International Date Line affect time calculations?
-Mathematics learners book grade 9 page 136;
-Globe;
-World map showing time zones and the International Date Line;
-Scientific calculators;
-Charts showing examples of local time calculations.
-Mathematics learners book grade 9 page 137;
-World map showing time zones;
-Digital devices showing current time in different cities;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
1 5
MEASUREMENTS
Money - Identifying Currencies Used in Different Countries
Money - Converting Currency from One to Another in Real Life Situations
By the end of the lesson, the learner should be able to:

-Identify currencies used in different countries;
-Match currencies with their respective countries;
-Recognize currency symbols;
-Show interest in learning about different currencies.
In groups, learners are guided to:
-Use digital devices to search and print pictures of currencies from: a) Neighboring countries b) Other African countries c) Common currencies used globally;
-Make a collage of different currencies on a piece of carton;
-Match currencies with their respective countries;
-Identify currency symbols (e.g., $, €, £, ¥);
-Display and present their collages to other groups.
Why do different countries use different currencies?
-Mathematics learners book grade 9 page 138;
-Digital devices for research;
-Pictures/samples of different currencies;
-Manila paper or carton;
-Charts showing currencies and their countries.
-Mathematics learners book grade 9 page 141;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Observation; -Oral questions; -Group presentations; -Assessment of currency collages.
2 1
MEASUREMENTS
Money - Converting Currency from One to Another in Real Life Situations
Money - Working Out Export Duties Charged on Goods
By the end of the lesson, the learner should be able to:

-Convert Kenyan currency to foreign currency;
-Use exchange rate tables to convert currencies;
-Solve problems involving currency conversion;
-Show interest in understanding international currency exchange.
In groups, learners are guided to:
-Review the concept of exchange rates;
-Understand that the selling rate is used when converting Kenyan Shillings to foreign currency;
-Convert Kenyan Shillings to various foreign currencies using the selling rate;
-Solve problems involving currency conversion;
-Discuss real-life situations where currency conversion is necessary;
-Discuss and share results with other groups.
How do exchange rates affect international trade?
-Mathematics learners book grade 9 page 142;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Charts showing export duty rates;
-Examples of export scenarios.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 2
MEASUREMENTS
Money - Working Out Import Duties Charged on Goods
Money - Working Out Excise Duty Charged on Goods
By the end of the lesson, the learner should be able to:

-Define import duty;
-Calculate import duty on goods;
-Identify goods exempted from import duty;
-Show interest in understanding import duties.
In groups, learners are guided to:
-Use digital devices to search for the meaning of import duty;
-Research the percentage of import duty on different goods and services;
-Identify examples of goods exempted from import duty in Kenya;
-Calculate import duty on goods using the formula: Import Duty = Customs Value × Duty Rate;
-Solve problems involving import duties;
-Discuss and share findings with other groups.
What are import duties and why are they charged?
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Scientific calculators;
-Charts showing import duty rates;
-Examples of import scenarios.
-Mathematics learners book grade 9 page 145;
-Charts showing excise duty rates;
-Examples of goods subject to excise duty.
-Observation; -Oral questions; -Written exercises; -Research presentation.
2 3
MEASUREMENTS
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
Approximations and Errors - Approximating Quantities in Measurements
By the end of the lesson, the learner should be able to:

-Define Value Added Tax (VAT);
-Identify goods and services that attract VAT;
-Calculate VAT on goods and services;
-Appreciate the role of VAT in government revenue collection.
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT;
-Research goods that attract VAT;
-Research the percentage of VAT charged on goods and services;
-Study receipts to identify VAT amounts;
-Calculate VAT on various goods and services;
-Discuss and share findings with other groups.
How is VAT calculated and why is it charged?
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT;
-Digital devices for research;
-Scientific calculators;
-Charts showing VAT calculations.
-Mathematics learners book grade 9 page 148;
-Measuring tapes/rulers;
-Various objects to measure;
-Charts showing conventional and arbitrary units;
-Open space for measuring with strides.
-Observation; -Oral questions; -Written exercises; -Analysis of receipts.
2 4
MEASUREMENTS
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
By the end of the lesson, the learner should be able to:

-Define error in measurements;
-Determine errors by comparing estimated and actual measurements;
-Calculate absolute errors in measurements;
-Develop genuine interest in understanding measurement errors.
In groups, learners are guided to:
-Estimate the measurements of various items in centimeters;
-Use a ruler to find the actual measurements of the items;
-Find the difference between the estimated and measured values;
-Understand that error = measured value - estimated value;
-Complete a table with estimated values, measured values, and errors;
-Discuss and share findings with other groups.
How do we determine errors in measurements?
-Mathematics learners book grade 9 page 149;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Mathematics learners book grade 9 page 151;
-Observation; -Oral questions; -Written exercises; -Practical assessment.
2 5
Geometry
Coordinates and Graphs - Plotting points on a Cartesian plane
Coordinates and Graphs - Drawing a straight line graph
By the end of the lesson, the learner should be able to:

Plot out points on a Cartesian plane;
Work in groups to locate points on a plane;
Appreciate the use of Cartesian plane in locating positions.
Learners are guided to work in groups and locate the point of intersection of the x-coordinate and the y-coordinates on a Cartesian plane.
Learners plot given points such as P(3,4), Q(4,-2), R(-3,-5) and S(-1,5) on a Cartesian plane.
How do we locate a point on a Cartesian plane?
-KLB Mathematics Grade 9 Textbook page 154
-Graph paper
-Ruler
-Pencils
-Charts with Cartesian plane
-Colored markers
-KLB Mathematics Grade 9 Textbook page 155
-Calculator
-Blackboard illustration
-Oral questions -Observation -Written exercise -Peer assessment
3 1
Geometry
Coordinates and Graphs - Completing tables for linear equations
Coordinates and Graphs - Drawing parallel lines
By the end of the lesson, the learner should be able to:

Complete tables of values for different linear equations;
Plot points from completed tables on a Cartesian plane;
Enjoy drawing straight line graphs from tables of values.
Learners complete tables of values for given linear equations such as y=2x+3.
Learners plot the points on a Cartesian plane and join them using a straight edge to form a straight line graph.
Learners work in pairs to generate their own tables of values for different equations.
How do we use tables of values to draw straight line graphs?
-KLB Mathematics Grade 9 Textbook page 156
-Graph paper
-Ruler
-Pencils
-Calculator
-Charts with prepared tables
-KLB Mathematics Grade 9 Textbook page 157
-Set square
-Charts showing parallel lines
-Oral questions -Peer assessment -Written exercise -Checklist
3 2
Geometry
Coordinates and Graphs - Relating gradients of parallel lines
Coordinates and Graphs - Drawing perpendicular lines
By the end of the lesson, the learner should be able to:

Determine the gradients of straight lines;
Relate the gradients of parallel lines;
Value the importance of gradient in determining parallel lines.
Learners work in groups to generate tables of values for equations y=3x-4 and y=3x-1.
Learners draw the lines on the Cartesian plane and determine their gradients.
Learners compare the gradients and discuss the relationship between the gradients of parallel lines.
What is the relationship between the gradients of parallel lines?
-KLB Mathematics Grade 9 Textbook page 158
-Graph paper
-Ruler
-Calculator
-Manila paper
-Digital devices (optional)
-KLB Mathematics Grade 9 Textbook page 159
-Protractor
-Set square
-Charts showing perpendicular lines
-Oral questions -Group discussion -Written exercise -Assessment rubrics
3 3
Geometry
Coordinates and Graphs - Relating gradients of perpendicular lines
Coordinates and Graphs - Applications of straight line graphs
By the end of the lesson, the learner should be able to:

Determine gradients of perpendicular lines;
Find the relationship between gradients of perpendicular lines;
Appreciate the application of gradient in determining perpendicular lines.
Learners work in groups to generate tables of values for equations such as y=3x+2 and y=-1/3x+1.
Learners draw the lines on the Cartesian plane, determine their gradients, and find the product of the gradients.
Learners discuss the relationship between the gradients of perpendicular lines.
What is the product of the gradients of two perpendicular lines?
-KLB Mathematics Grade 9 Textbook page 160
-Graph paper
-Ruler
-Calculator
-Set square
-Charts with examples of perpendicular lines
-KLB Mathematics Grade 9 Textbook page 165
-Charts showing real-life applications
-Manila paper for presentations
-Oral questions -Group work -Written exercise -Assessment rubrics
3 4
Geometry
Scale Drawing - Compass directions
Scale Drawing - Compass bearings
By the end of the lesson, the learner should be able to:

Identify compass and true bearings in real-life situations;
Draw and discuss the compass directions;
Appreciate the use of compass in navigation.
Learners carry out an activity outside the classroom where a member stands with hands spread out.
Learners draw a diagram showing the directions of the right hand, left hand, front, and back, labeling them in terms of North, South, East, and West.
Learners discuss situations where knowledge of compass direction is used.
How do we use compass directions to locate positions?
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass
-Plain paper
-Colored pencils
-Charts showing compass directions
-Maps
-KLB Mathematics Grade 9 Textbook page 170
-Protractor
-Ruler
-Charts showing compass bearings
-Manila paper
-Oral questions -Practical activity -Written exercise -Observation
3 5
Geometry
Scale Drawing - True bearings
Scale Drawing - Determining compass bearings
By the end of the lesson, the learner should be able to:

Identify true bearings in real-life situations;
Draw and measure true bearings;
Appreciate the difference between compass and true bearings.
Learners trace diagrams showing true bearings.
Learners measure angles from North in the clockwise direction.
Learners draw accurately true bearings such as 008°, 036°, 126°, etc.
What is the difference between compass bearings and true bearings?
-KLB Mathematics Grade 9 Textbook page 171
-Protractor
-Ruler
-Plain paper
-Charts showing true bearings
-Diagrams for tracing
-KLB Mathematics Grade 9 Textbook page 173
-Charts with bearing examples
-Manila paper for group work
-Oral questions -Practical activity -Written exercise -Assessment rubrics
4 1
Geometry
Scale Drawing - Determining true bearings
Scale Drawing - Locating points using compass bearing and distance
By the end of the lesson, the learner should be able to:

Determine true bearings in different situations;
Measure angles to find true bearings;
Value the use of true bearings in navigation.
Learners consider a diagram showing points C and D.
Learners identify and determine the bearing of D from C by measurement.
Learners measure the bearing of various points in different diagrams.
How do we determine the true bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 175
-Protractor
-Ruler
-Plain paper
-Worksheets with diagrams
-Charts with bearing examples
-KLB Mathematics Grade 9 Textbook page 178
-Drawing board
-Charts with examples
-Worksheets
-Oral questions -Practical activity -Written exercise -Checklist
4 2
Geometry
Scale Drawing - Locating points using true bearing and distance
Scale Drawing - Angle of elevation
By the end of the lesson, the learner should be able to:

Locate a point using true bearing and distance;
Create scale drawings showing relative positions;
Enjoy making scale drawings using bearings and distances.
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A.
Learners make scale drawings showing the relative positions of multiple points.
How do we use true bearings and distances to create scale drawings?
-KLB Mathematics Grade 9 Textbook page 182
-Protractor
-Ruler
-Plain paper
-Drawing board
-Manila paper for presentations
-Worksheets
-KLB Mathematics Grade 9 Textbook page 186
-String
-Weight (about 25g)
-Cardboard
-Straight piece of wood
-Charts showing angles of elevation
-Oral questions -Practical activity -Written exercise -Observation
4 3
Geometry
Scale Drawing - Determining angles of elevation
Scale Drawing - Angle of depression
By the end of the lesson, the learner should be able to:

Determine angles of elevation in different situations;
Use scale drawings to find angles of elevation;
Value the use of scale drawings in solving problems involving elevation.
Learners consider a flag pole AB that is 8 m high with point C on level ground 18 m from the foot of the pole.
Learners make a scale drawing showing A, B, and C using a scale of 1 cm represents 2 m.
Learners measure the angle between AC and CB and display their drawings.
How can we use scale drawings to determine angles of elevation?
-KLB Mathematics Grade 9 Textbook page 187
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts showing examples
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson)
-String
-Weight
-Charts showing angles of depression
-Diagrams
-Oral questions -Scale drawing -Written exercise -Presentation
4 4
Geometry
Scale Drawing - Determining angles of depression
Scale Drawing - Application in simple surveying
By the end of the lesson, the learner should be able to:

Determine angles of depression in different situations;
Use scale drawings to find angles of depression;
Enjoy solving problems involving angles of depression.
Learners consider a stationary boat (B) that is 120 m away from the foot (F) of a cliff of height 80 m.
Learners make a scale drawing showing the positions of A, F, and B using a scale of 1 cm represents 20 m.
Learners measure the angle between the horizontal line passing through A and line AB to find the angle of depression.
How can we use scale drawings to determine angles of depression?
-KLB Mathematics Grade 9 Textbook page 192
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts with examples
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper
-Set square
-Pencil
-Field book (notebook)
-Charts with survey examples
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
4 5
Geometry
Scale Drawing - Survey using bearings and distances
Scale Drawing - Complex surveying problems
By the end of the lesson, the learner should be able to:

Survey an area using bearings and distances;
Create scale drawings from bearing and distance data;
Appreciate the application of bearings in surveying.
Learners study a sketch of a piece of land with positions given in terms of bearings and distances from point A.
Learners mark point A and use the bearings and distances to locate other points.
Learners create scale drawings of areas described by bearings and distances from given tables.
How do surveyors use bearings and distances to map areas?
-KLB Mathematics Grade 9 Textbook page 199
-Protractor
-Ruler
-Plain paper
-Drawing board
-Field book
-Charts with examples
-KLB Mathematics Grade 9 Textbook page 202
-Drawing paper
-Calculator
-Maps
-Oral questions -Scale drawing -Written exercise -Presentation
5 1
Geometry
Scale Drawing - Project work on scale drawing
Similarity and Enlargement - Similar figures and properties
By the end of the lesson, the learner should be able to:

Apply scale drawing techniques to a real-life situation;
Create a scale map of the school compound or local area;
Appreciate the practical applications of scale drawing.
Learners work in groups to create a scale map of a part of the school compound.
Learners measure distances and determine bearings between key features.
Learners create a detailed scale drawing with a key showing the various features mapped.
How can we apply scale drawing techniques to map our environment?
-KLB Mathematics Grade 9 Textbook page 202
-Measuring tape
-Compass
-Drawing paper
-Colored pencils
-Manila paper
-Drawing instruments
-KLB Mathematics Grade 9 Textbook page 203
-Ruler
-Protractor
-Cut-out shapes
-Charts showing similar figures
-Project work -Group presentation -Peer assessment -Observation
5 2
Geometry
Similarity and Enlargement - Identifying similar objects
Similarity and Enlargement - Drawing similar figures
Similarity and Enlargement - Properties of enlargement
By the end of the lesson, the learner should be able to:

Identify similar objects in the environment;
Determine if given figures are similar;
Value the concept of similarity in everyday life.
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams.
Learners discuss real-life examples of similar objects and their properties.
How do we recognize similar objects in our environment?
-KLB Mathematics Grade 9 Textbook page 204
-Ruler
-Protractor
-Various geometric objects
-Charts with examples
-Worksheets with diagrams
-KLB Mathematics Grade 9 Textbook page 206
-Pair of compasses
-Drawing paper
-Calculator
-KLB Mathematics Grade 9 Textbook page 209
-Tracing paper
-Colored pencils
-Grid paper
-Charts showing enlargements
-Diagrams for tracing
-Oral questions -Group work -Written exercise -Observation
5 3
Geometry
Similarity and Enlargement - Negative scale factors
Similarity and Enlargement - Drawing images of objects
By the end of the lesson, the learner should be able to:

Determine properties of enlargement with negative scale factors;
Locate centers of enlargement with negative scale factors;
Appreciate the concept of negative scale factors in enlargements.
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement.
Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object.
What happens when an enlargement has a negative scale factor?
-KLB Mathematics Grade 9 Textbook page 211
-Ruler
-Tracing paper
-Grid paper
-Colored pencils
-Charts showing negative scale factor enlargements
-Diagrams for tracing
-KLB Mathematics Grade 9 Textbook page 214
-Charts showing steps of enlargement
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
5 4
Geometry
Similarity and Enlargement - Linear scale factor
Similarity and Enlargement - Using coordinates in enlargement
By the end of the lesson, the learner should be able to:

Determine the linear scale factor of similar figures;
Calculate unknown dimensions using linear scale factors;
Value the application of linear scale factors in real-life problems.
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor.
Learners use the scale factor to find unknown dimensions of similar figures.
How do we use linear scale factors to calculate unknown dimensions of similar figures?
-KLB Mathematics Grade 9 Textbook page 216
-Ruler
-Calculator
-Similar objects of different sizes
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper
-Colored pencils
-Charts with coordinate examples
-Oral questions -Group work -Written exercise -Assessment rubrics
5 5
Geometry
Similarity and Enlargement - Applications of similarity
Trigonometry - Angles and sides of right-angled triangles
By the end of the lesson, the learner should be able to:

Apply similarity concepts to solve real-life problems;
Calculate heights and distances using similar triangles;
Value the practical applications of similarity in everyday life.
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering.
Learners work on practical applications of similarity in the environment.
How can we use similarity to solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 219
-Ruler
-Calculator
-Drawing paper
-Charts with real-life applications
-Manila paper for presentations
-KLB Mathematics Grade 9 Textbook page 220
-Protractor
-Set square
-Charts with labeled triangles
-Colored markers
-Oral questions -Problem-solving -Written exercise -Group presentation
6 1
Geometry
Trigonometry - Sine ratio
Trigonometry - Cosine ratio
By the end of the lesson, the learner should be able to:

Identify sine ratio from a right-angled triangle;
Calculate sine of angles in right-angled triangles;
Value the use of sine ratio in solving problems.
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths.
Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio.
What is the sine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 222
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing sine ratio
-Manila paper
-KLB Mathematics Grade 9 Textbook page 223
-Charts showing cosine ratio
-Worksheets
-Oral questions -Practical activity -Written exercise -Assessment rubrics
6 2
Geometry
Trigonometry - Tangent ratio
Trigonometry - Reading tables of sines
By the end of the lesson, the learner should be able to:

Identify tangent ratio from a right-angled triangle;
Calculate tangent of angles in right-angled triangles;
Appreciate the importance of tangent ratio in problem-solving.
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths.
Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio.
What is the tangent of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 225
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing tangent ratio
-Manila paper
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Checklist
6 3
Geometry
Trigonometry - Reading tables of cosines and tangents
Trigonometry - Using calculators for trigonometric ratios
By the end of the lesson, the learner should be able to:

Read tables of cosines and tangents for acute angles;
Find cosine and tangent values using mathematical tables;
Enjoy using mathematical tables to find trigonometric ratios.
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles.
Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents.
How do we use mathematical tables to find cosine and tangent values?
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators
-Chart showing calculator keys
-Oral questions -Practical activity -Written exercise -Observation
6 4
Geometry
Trigonometry - Calculating lengths using trigonometric ratios
Trigonometry - Calculating angles using trigonometric ratios
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to calculate lengths of right-angled triangles;
Use sine, cosine, and tangent ratios to find unknown sides;
Appreciate the application of trigonometry in solving real-life problems.
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side.
Learners solve problems involving finding sides of right-angled triangles.
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 235
-Oral questions -Group work -Written exercise -Assessment rubrics
6 5
Geometry
Trigonometry - Application in heights and distances
Trigonometry - Application in navigation
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to solve problems involving heights and distances;
Calculate heights of objects using angles of elevation;
Value the use of trigonometry in real-life situations.
Learners solve problems involving finding heights of objects like flag poles, towers, and buildings using angles of elevation.
Learners apply sine, cosine, and tangent ratios as appropriate to calculate unknown heights and distances.
Learners discuss real-life applications of trigonometry in architecture, navigation, and engineering.
How do we use trigonometry to find heights and distances in real-life situations?
-KLB Mathematics Grade 9 Textbook page 237
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with real-life examples
-Manila paper
-KLB Mathematics Grade 9 Textbook page 238
-Protractor
-Maps
-Charts with navigation examples
-Oral questions -Problem-solving -Written exercise -Group presentation
7 1
Geometry
Data Handling and Probability
Trigonometry - Review and mixed applications
Data Interpretation - Appropriate class width
By the end of the lesson, the learner should be able to:

Apply trigonometric concepts in mixed application problems;
Solve problems involving both scale drawing and trigonometry;
Value the integration of different geometric concepts in problem-solving.
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems.
Learners discuss how different geometric concepts interconnect in solving real-world problems.
How can we integrate different geometric concepts to solve complex problems?
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Drawing paper
-Past examination questions
-KLB Mathematics Grade 9 Textbook page 244
-Calculator
-Graph paper
-Manila paper
-Rulers
-Colored markers
-Oral questions -Problem-solving -Written exercise -Assessment test
7 2
Data Handling and Probability
Data Interpretation - Finding range and creating groups
Data Interpretation - Frequency distribution tables
By the end of the lesson, the learner should be able to:

Calculate the range of a set of data;
Divide data into suitable class intervals;
Show interest in grouping data for better representation.
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data.
Learners complete a table using a class width of 10 and determine the number of classes formed.
How does the range of data help us determine appropriate class intervals?
-KLB Mathematics Grade 9 Textbook page 245
-Calculator
-Manila paper
-Data sets
-Chart with examples
-Colored markers
-KLB Mathematics Grade 9 Textbook page 247
-Chart paper
-Ruler
-Oral questions -Written exercise -Observation -Group work assessment
7 3
Data Handling and Probability
Data Interpretation - Creating frequency tables with different class intervals
Data Interpretation - Modal class
By the end of the lesson, the learner should be able to:

Construct frequency tables starting with different class intervals;
Use tally marks to represent data in frequency tables;
Appreciate the use of different class intervals in data representation.
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class.
Learners compare and discuss different frequency tables.
How do we choose appropriate starting points for class intervals?
-KLB Mathematics Grade 9 Textbook page 247
-Calculator
-Ruler
-Graph paper
-Manila paper
-Worksheets with data
-KLB Mathematics Grade 9 Textbook page 248
-Chart showing frequency distribution tables
-Colored markers
-Oral questions -Written exercise -Group presentations -Observation
7 4
Data Handling and Probability
Data Interpretation - Mean of ungrouped data
Data Interpretation - Mean of grouped data
By the end of the lesson, the learner should be able to:

Calculate the mean of ungrouped data in a frequency table;
Multiply each value by its frequency and find their sum;
Show interest in calculating mean in real-life situations.
Learners consider the height, in metres, of 10 people recorded in a frequency distribution table.
Learners complete a table showing the product of height and frequency (fx).
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of data presented in a frequency table?
-KLB Mathematics Grade 9 Textbook page 249
-Calculator
-Chart showing frequency tables
-Worksheets
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 250
-Graph paper
-Chart with examples
-Oral questions -Written exercise -Observation -Assessment rubrics
7 5
Data Handling and Probability
Data Interpretation - Mean calculation in real-life situations
Data Interpretation - Median of grouped data
By the end of the lesson, the learner should be able to:

Calculate the mean of grouped data from real-life situations;
Apply the formula for finding mean of grouped data;
Appreciate the use of mean in summarizing data in real life.
Learners are presented with data about plants that survived in 50 sampled schools during an environmental week.
Learners find midpoints of class intervals, multiply by frequencies, and sum them up.
Learners calculate the mean number of plants that survived by dividing the sum of fx by the sum of f.
How is the mean used to summarize real-life data?
-KLB Mathematics Grade 9 Textbook page 251
-Calculator
-Manila paper
-Chart with examples
-Worksheets
-Colored markers
-KLB Mathematics Grade 9 Textbook page 252
-Chart showing cumulative frequency tables
-Oral questions -Group work -Written exercise -Assessment rubrics
8 1
Data Handling and Probability
Data Interpretation - Calculating median using formula
Data Interpretation - Median calculations in real-life situations
By the end of the lesson, the learner should be able to:

Apply the formula for calculating median of grouped data;
Identify class boundaries, frequencies, and cumulative frequencies;
Show interest in finding median from real-life data.
Learners consider marks scored by 40 learners in a test presented in a table.
Learners complete the column for cumulative frequency and identify the median class.
Learners identify the lower class boundary, cumulative frequency above median class, class width, and frequency of median class to substitute in the formula.
How do we use the formula to calculate the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 253
-Calculator
-Graph paper
-Chart showing median formula
-Worksheets
-Manila paper
-KLB Mathematics Grade 9 Textbook page 254
-Chart with example calculations
-Worksheets with real-life data
-Colored markers
-Oral questions -Written exercise -Group work assessment -Assessment rubrics
8 2
Data Handling and Probability
Probability - Equally likely outcomes
Probability - Range of probability
By the end of the lesson, the learner should be able to:

Perform experiments involving equally likely outcomes;
Record outcomes of chance experiments;
Appreciate that some events have equal chances of occurring.
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up.
Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities.
What makes events equally likely to occur?
-KLB Mathematics Grade 9 Textbook page 256
-Coins
-Chart paper
-Table for recording outcomes
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 257
-Dice
-Chart showing probability scale (0-1)
-Oral questions -Practical activity -Group work assessment -Observation
8 3
Data Handling and Probability
Probability - Complementary events
Probability - Mutually exclusive events
By the end of the lesson, the learner should be able to:

Calculate probability of complementary events;
Understand that sum of probabilities of complementary events is 1;
Show interest in applying complementary probability in real-life situations.
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement.
Learners verify that the sum of probabilities of an event and its complement equals 1.
How are complementary events related in terms of their probabilities?
-KLB Mathematics Grade 9 Textbook page 258
-Calculator
-Chart showing complementary events
-Worksheets with problems
-Manila paper
-Colored markers
-Coins
-Chart with examples of mutually exclusive events
-Flashcards with different scenarios
-Oral questions -Written exercise -Group work assessment -Observation
8 4
Data Handling and Probability
Probability - Experiments with mutually exclusive events
Probability - Independent events
By the end of the lesson, the learner should be able to:

Perform experiments of single chance involving mutually exclusive events;
Calculate probability of mutually exclusive events;
Value the application of mutually exclusive events in real-life.
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box.
Learners find probabilities of individual events and their union.
How do we calculate the probability of mutually exclusive events?
-KLB Mathematics Grade 9 Textbook page 259
-Dice
-Colored objects in boxes
-Calculator
-Chart showing probability calculations
-Worksheets with problems
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice
-Table for recording outcomes
-Chart showing examples of independent events
-Manila paper
-Colored markers
-Oral questions -Practical activity -Written exercise -Assessment rubrics
8 5
Data Handling and Probability
Probability - Calculating probabilities of independent events
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Calculate probabilities of independent events;
Apply the multiplication rule for independent events;
Appreciate the application of independent events in real-life situations.
Learners solve problems involving independent events.
Learners calculate probabilities of individual events and multiply them to find joint probability.
Learners solve problems involving machines breaking down independently and other real-life examples.
How do we calculate the probability of independent events occurring together?
-KLB Mathematics Grade 9 Textbook page 261
-Calculator
-Chart showing multiplication rule
-Worksheets with problems
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper
-Ruler
-Worksheets with blank tree diagrams
-Chart showing completed tree diagrams
-KLB Mathematics Grade 9 Textbook page 263
-Chart showing complex tree diagrams
-Oral questions -Written exercise -Group presentations -Assessment rubrics

Your Name Comes Here


Download

Feedback