Home






SCHEME OF WORK
Mathematics
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
Quadratic Expressions and Equations
Factorisation of quadratic expressions
By the end of the lesson, the learner should be able to:
Factorize quadratic expressions
Write the perfect squares
Apply factorization methods to solve problems
Q/A on revision of linear expressions
Discussions on quadratic expression patterns
Solving problems using factorization
Demonstrations on factorization techniques
Explaining step-by-step methods
Calculators, charts showing factorization patterns
KLB Mathematics Book Three Pg 1
1 2
Quadratic Expressions and Equations
Factorisation of quadratic expressions
Completing squares
Completing squares
Solving quadratic expressions by completing square
By the end of the lesson, the learner should be able to:
Factorize quadratic expressions using different methods
Identify common factors in expressions
Apply grouping method to factorize
Q/A on previous lesson concepts
Discussions on advanced factorization
Solving complex factorization problems
Demonstrations of grouping methods
Explaining various factorization techniques
Calculators, factorization method charts
Calculators, perfect square charts
Calculators, vertex form examples
Calculators, equation solving guides
KLB Mathematics Book Three Pg 1-2
1 3
Quadratic Expressions and Equations
Solving quadratic expressions by factorization
The quadratic formula
The quadratic formula
By the end of the lesson, the learner should be able to:
Solve quadratic expressions by factorization
Apply zero product property
Choose appropriate factorization method
Q/A on factorization techniques
Discussions on solving strategies
Solving equations using factorization
Demonstrations of zero product rule
Explaining method selection
Calculators, method selection charts
Calculators, formula derivation charts
Calculators, discriminant interpretation guides
KLB Mathematics Book Three Pg 7
1 4
Quadratic Expressions and Equations
Formation of quadratic equations
Graphs of quadratic functions
By the end of the lesson, the learner should be able to:
Form a quadratic equation from word problem
Create equations from given roots
Apply sum and product of roots
Q/A on roots and coefficients relationship
Discussions on equation formation
Solving word problems leading to equations
Demonstrations of equation creation
Explaining formation processes
Calculators, word problem templates
Graph papers, calculators, plotting guides
KLB Mathematics Book Three Pg 9-10
1 5
Quadratic Expressions and Equations
Graphs of quadratic functions
Graphical solutions of quadratic equation
By the end of the lesson, the learner should be able to:
Draw graphs of quadratic functions
Identify vertex and axis of symmetry
Find intercepts from graphs
Q/A on graph plotting techniques
Discussions on graph features
Solving graphing problems
Demonstrations of feature identification
Explaining graph properties
Graph papers, calculators, rulers
KLB Mathematics Book Three Pg 12-15
1 6
Quadratic Expressions and Equations
Graphical solutions of quadratic equation
By the end of the lesson, the learner should be able to:
Solve quadratic equations using the graphs
Verify algebraic solutions graphically
Estimate solutions from graphs
Q/A on solution verification
Discussions on estimation techniques
Solving complex graphical problems
Demonstrations of verification methods
Explaining accuracy in estimation
Graph papers, calculators, estimation guides
KLB Mathematics Book Three Pg 17-19
1 7
Quadratic Expressions and Equations
Approximations and Errors
Graphical solutions of simultaneous equations
Computing using calculators
By the end of the lesson, the learner should be able to:
Draw tables for simultaneous equations
Find the graphical solutions of simultaneous equations
Solve systems involving quadratic and linear equations
Q/A on simultaneous equation concepts
Discussions on intersection analysis
Solving systems of equations
Demonstrations of intersection finding
Explaining solution interpretation
Graph papers, calculators, intersection analysis guides
Calculators, operation guides
KLB Mathematics Book Three Pg 19-21
2 1
Approximations and Errors
Computing using calculators
Approximation
By the end of the lesson, the learner should be able to:
Solve basic operations using calculators
Perform complex calculations accurately
Verify calculator results
Q/A on calculator accuracy
Discussions on verification methods
Solving complex computational problems
Demonstrations of result checking
Explaining calculation verification
Calculators, verification worksheets
Calculators, rounding charts
KLB Mathematics Book Three Pg 26-28
2 2
Approximations and Errors
Estimation
Accuracy and errors
By the end of the lesson, the learner should be able to:
Approximate values by truncation
Estimate values using appropriate methods
Compare estimation techniques
Q/A on estimation strategies
Discussions on truncation vs rounding
Solving estimation problems
Demonstrations of truncation methods
Explaining when to use different techniques
Calculators, estimation guides
Calculators, error calculation sheets
KLB Mathematics Book Three Pg 30
2 3
Approximations and Errors
Percentage error
By the end of the lesson, the learner should be able to:
Find the percentage error of a given value
Calculate percentage error accurately
Interpret percentage error results
Q/A on percentage concepts
Discussions on percentage error meaning
Solving percentage error problems
Demonstrations of percentage calculations
Explaining error interpretation
Calculators, percentage error worksheets
KLB Mathematics Book Three Pg 32-34
2 4
Approximations and Errors
Rounding off error and truncation error
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the rounding off error
Calculate truncation error
Compare rounding and truncation errors
Q/A on error types
Discussions on error sources
Solving rounding and truncation error problems
Demonstrations of error comparison
Explaining error analysis
Calculators, error comparison charts
Calculators, error propagation guides
KLB Mathematics Book Three Pg 34
2 5
Approximations and Errors
Propagation of errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Apply error propagation to complex problems
Verify error calculations
Q/A on propagation mastery
Discussions on complex error scenarios
Solving advanced propagation problems
Demonstrations of verification methods
Explaining error validation
Calculators, verification worksheets
Calculators, multiplication error guides
KLB Mathematics Book Three Pg 35-36
2 6
Approximations and Errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in multiplication
Solve complex multiplication error problems
Compare different error propagation methods
Q/A on advanced multiplication errors
Discussions on complex error scenarios
Solving challenging multiplication problems
Demonstrations of method comparison
Explaining optimal error calculation
Calculators, method comparison charts
KLB Mathematics Book Three Pg 36-37
2 7
Approximations and Errors
Propagation of errors in division
By the end of the lesson, the learner should be able to:
Find the propagation of errors in division
Calculate errors in quotients
Apply division error rules
Q/A on division error concepts
Discussions on quotient error calculation
Solving division error problems
Demonstrations of division error methods
Explaining division error principles
Calculators, division error worksheets
Calculators, verification guides
KLB Mathematics Book Three Pg 37-38
3

OPENER CAT

4 1
Approximations and Errors
Trigonometry (II)
Word problems
The unit circle
By the end of the lesson, the learner should be able to:
Find the propagation of errors of a word problem
Apply error analysis to real-world situations
Solve comprehensive error problems
Q/A on chapter consolidation
Discussions on real-world applications
Solving comprehensive word problems
Demonstrations of problem-solving strategies
Explaining practical error analysis
Calculators, word problem sets, comprehensive review sheets
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 39-40
4 2
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
4 3
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Calculate trigonometric ratios for obtuse angles
Apply reference angle concepts
Q/A on basic trigonometric ratios
Discussions on angle extensions
Solving obtuse angle problems
Demonstrations of reference angles
Explaining quadrant relationships
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts
KLB Mathematics Book Three Pg 44-45
4 4
Trigonometry (II)
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of negative angles
Apply negative angle identities
Solve problems involving negative angles
Q/A on negative angle concepts
Discussions on angle direction
Solving negative angle problems
Demonstrations of identity applications
Explaining clockwise rotations
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 48-49
4 5
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
KLB Mathematics Book Three Pg 51-55
4 6
Trigonometry (II)
Use of calculators
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
KLB Mathematics Book Three Pg 56-58
4 7
Trigonometry (II)
Radian measure
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Convert degrees to radians and vice versa
Apply radian measure in calculations
Understand radian-degree relationships
Q/A on angle measurement systems
Discussions on radian concepts
Solving conversion problems
Demonstrations of conversion methods
Explaining radian applications
Calculators, conversion charts
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 58-61
5 1
Trigonometry (II)
Graphs of cosines
Graphs of tan
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
5 2
Trigonometry (II)
The sine rule
By the end of the lesson, the learner should be able to:
State the sine rule
Apply sine rule to find solution of triangles
Solve triangles using sine rule
Q/A on triangle properties
Discussions on sine rule applications
Solving triangle problems
Demonstrations of rule application
Explaining ambiguous case
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 65-70
5 3
Trigonometry (II)
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 71-75
5 4
Surds
Rational and irrational numbers
Order of surds and simplification
By the end of the lesson, the learner should be able to:
Classify numbers as rational and irrational numbers
Identify rational and irrational numbers
Distinguish between rational and irrational forms
Q/A on number classification concepts
Discussions on rational vs irrational properties
Solving classification problems
Demonstrations of number identification
Explaining decimal representations
Calculators, number classification charts
Calculators, surd order examples
KLB Mathematics Book Three Pg 78
5 5
Surds
Simplification of surds practice
Addition of surds
By the end of the lesson, the learner should be able to:
Simplify surds using factorization
Express surds in simplest form
Apply systematic simplification methods
Q/A on factorization techniques
Discussions on factor identification
Solving extensive simplification problems
Demonstrations of step-by-step methods
Explaining perfect square extraction
Calculators, factor trees, simplification worksheets
Calculators, addition rule charts
KLB Mathematics Book Three Pg 79-80
5 6
Surds
Subtraction of surds
By the end of the lesson, the learner should be able to:
Subtract surds with like terms
Apply subtraction rules to surds
Simplify surd subtraction expressions
Q/A on subtraction principles
Discussions on surd subtraction methods
Solving subtraction problems
Demonstrations of systematic approaches
Explaining subtraction verification
Calculators, subtraction worksheets
KLB Mathematics Book Three Pg 80
5 7
Surds
Multiplication of surds
Division of surds
By the end of the lesson, the learner should be able to:
Multiply surds of the same order
Apply multiplication rules to surds
Simplify products of surds
Q/A on multiplication concepts
Discussions on surd multiplication laws
Solving multiplication problems
Demonstrations of product simplification
Explaining multiplication principles
Calculators, multiplication rule guides
Calculators, division worksheets
KLB Mathematics Book Three Pg 80-82
6 1
Surds
Rationalizing the denominator
Advanced rationalization techniques
By the end of the lesson, the learner should be able to:
Rationalize the denominator of fractions
Apply rationalization techniques
Simplify expressions with surd denominators
Q/A on rationalization concepts
Discussions on denominator clearing
Solving rationalization problems
Demonstrations of conjugate methods
Explaining rationalization importance
Calculators, rationalization guides
Calculators, advanced technique sheets
KLB Mathematics Book Three Pg 85-87
6 2
Further Logarithms
Introduction
By the end of the lesson, the learner should be able to:
Use calculators to find the logarithm of numbers
Understand logarithmic notation and concepts
Apply basic logarithmic principles
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties
Solving basic logarithm problems
Demonstrations of calculator usage
Explaining logarithm-exponential connections
Calculators, logarithm definition charts
KLB Mathematics Book Three Pg 89
6 3
Further Logarithms
Laws of logarithms
By the end of the lesson, the learner should be able to:
State the laws of logarithms
Apply basic logarithmic laws
Use logarithm laws for simple calculations
Q/A on logarithmic law foundations
Discussions on multiplication and division laws
Solving problems using basic laws
Demonstrations of law applications
Explaining law derivations
Calculators, logarithm law charts
Calculators, advanced law worksheets
KLB Mathematics Book Three Pg 90-93
6 4
Further Logarithms
Laws of logarithms
Logarithmic equations and expressions
By the end of the lesson, the learner should be able to:
Use laws of logarithms to solve problems
Master all logarithmic laws comprehensively
Apply laws to challenging mathematical problems
Q/A on comprehensive law understanding
Discussions on law selection strategies
Solving challenging logarithmic problems
Demonstrations of optimal law application
Explaining problem-solving approaches
Calculators, challenging problem sets
Calculators, equation-solving guides
KLB Mathematics Book Three Pg 90-93
6 5
Further Logarithms
Logarithmic equations and expressions
By the end of the lesson, the learner should be able to:
Solve the logarithmic equations and expressions
Handle complex logarithmic equations
Apply advanced solution techniques
Q/A on advanced equation methods
Discussions on complex equation structures
Solving challenging logarithmic equations
Demonstrations of sophisticated techniques
Explaining advanced solution strategies
Calculators, advanced equation worksheets
KLB Mathematics Book Three Pg 93-95
6 6
Further Logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to numerical computations
Use logarithms for complex calculations
Q/A on computational applications
Discussions on numerical problem-solving
Solving computation-based problems
Demonstrations of logarithmic calculations
Explaining computational advantages
Calculators, computation worksheets
Calculators, intermediate problem sets
KLB Mathematics Book Three Pg 95-96
6 7
Further Logarithms
Further computation using logarithms
Problem solving
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Master advanced logarithmic computations
Apply logarithms to complex mathematical scenarios
Q/A on advanced computational mastery
Discussions on complex calculation strategies
Solving advanced computation problems
Demonstrations of sophisticated methods
Explaining optimal computational approaches
Calculators, advanced computation guides
Calculators, comprehensive problem sets
KLB Mathematics Book Three Pg 95-96
7 1
Further Logarithms
Formulae and Variations
Problem solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithmic concepts to real-world situations
Handle practical logarithmic applications
Q/A on real-world applications
Discussions on practical problem contexts
Solving real-world logarithmic problems
Demonstrations of practical applications
Explaining everyday logarithm usage
Calculators, real-world application examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 97
7 2
Formulae and Variations
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
7 3
Formulae and Variations
Subject of a formula - intermediate cases
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
7 4
Formulae and Variations
Applications of formula manipulation
Introduction to variation
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 191-193
7 5
Formulae and Variations
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
7 6
Sequences and Series
Introduction to sequences and finding terms
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
7 7
Sequences and Series
Arithmetic sequences and nth term
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
8

HALF TERM BREAK

9 1
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
9 2
Sequences and Series
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 214-215
9 3
Sequences and Series
Geometric series and applications
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 216-219
9 4
Sequences and Series
Binomial Expansion
Sequences in nature and technology
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 207-219
9 5
Binomial Expansion
Binomial expansions up to power four (continued)
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
KLB Mathematics Book Three Pg 256
9 6
Binomial Expansion
Pascal's triangle
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Construct Pascal's triangle systematically
Apply triangle coefficients for binomial expansions
Recognize number patterns in the triangle
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis
Solving triangle construction and application problems
Demonstrations using visual triangle building
Explaining pattern connections using systematic observation
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 256-257
9 7
Binomial Expansion
Pascal's triangle (continued)
Pascal's triangle advanced
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
10 1
Binomial Expansion
Applications to numerical cases
Applications to numerical cases (continued)
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply expansions for numerical approximations
Calculate values using binomial methods
Understand practical applications of expansions
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods
Solving numerical problems using binomial approaches
Demonstrations using practical calculation scenarios
Explaining approximation benefits using real examples
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books
KLB Mathematics Book Three Pg 259-260
10 2
Probability
Introduction
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 262-264
10 3
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
10 4
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
10 5
Probability
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
10 6
Probability
Theoretical Probability advanced
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
10 7
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
11 1
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
11 2
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
11 3
Probability
Tree Diagrams
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 282
11 4
Compound Proportion and Rates of Work
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 288-290
11 5
Compound Proportion and Rates of Work
Proportional Parts
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
KLB Mathematics Book Three Pg 291-293
11 6
Compound Proportion and Rates of Work
Proportional Parts applications
Rates of Work
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Apply proportional parts to complex sharing scenarios
Handle business partnership profit sharing
Solve advanced proportional distribution problems
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios
Solving advanced proportional problems using systematic methods
Demonstrations using business partnership and investment examples
Explaining practical applications using meaningful contexts
Chalk and blackboard, business partnership examples, exercise books
Chalk and blackboard, work scenario examples, exercise books
KLB Mathematics Book Three Pg 291-293
11 7
Compound Proportion and Rates of Work
Graphical Methods
Rates of Work and Mixtures
Tables of given relations
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Apply work rates to complex scenarios
Handle mixture problems and combinations
Solve advanced rate and mixture problems
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples
Solving challenging rate and mixture problems using systematic approaches
Demonstrations using cooking, construction, and manufacturing examples
Explaining mixture concepts using practical applications
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 295-296
12 1
Graphical Methods
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 300
12 2
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
12 3
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
12 4
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
12 5
Graphical Methods
Advanced average rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
KLB Mathematics Book Three Pg 304-310
12 6
Graphical Methods
Introduction to instantaneous rates
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
12 7
Graphical Methods
Advanced instantaneous rates
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 310-315
13

CLOSING CAT


Your Name Comes Here


Download

Feedback