Home






SCHEME OF WORK
Mathematics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Matrices and Transformation
Matrices of Transformation
By the end of the lesson, the learner should be able to:

-Define transformation and identify types
-Recognize that matrices can represent transformations
-Apply 2×2 matrices to position vectors
-Relate matrix operations to geometric transformations

-Review transformation concepts from Form 2
-Demonstrate matrix multiplication using position vectors
-Plot objects and images on coordinate plane
-Practice identifying transformations from images
Exercise books
-Manila paper
-Ruler
-Pencils
KLB Secondary Mathematics Form 4, Pages 1-5
2 2
Matrices and Transformation
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation
Using the Unit Square Method
By the end of the lesson, the learner should be able to:

-Identify matrices for reflection, rotation, enlargement
-Describe transformations represented by given matrices
-Apply identity matrix and understand its effect
-Distinguish between different types of transformations

-Use unit square drawn on paper to identify transformations
-Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1)
-Draw objects and images under various transformations
-Q&A on transformation properties
Exercise books
-Manila paper
-Ruler
-String
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 1-5
2 3
Matrices and Transformation
Successive Transformations
Matrix Multiplication for Combined Transformations
Single Matrix for Successive Transformations
By the end of the lesson, the learner should be able to:

-Understand the concept of successive transformations
-Apply transformations in correct order
-Recognize that order matters in matrix multiplication
-Perform multiple transformations step by step

-Demonstrate successive transformations with paper cutouts
-Practice applying transformations in sequence
-Compare results when order is changed
-Work through step-by-step examples
Exercise books
-Manila paper
-Ruler
-Coloured pencils
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 16-24
2 4-5
Matrices and Transformation
Inverse of a Transformation
Properties of Inverse Transformations
Area Scale Factor and Determinant
By the end of the lesson, the learner should be able to:

-Define inverse transformation conceptually
-Find inverse matrices using algebraic methods
-Apply inverse transformations to return objects to original position
-Verify inverse relationships using matrix multiplication

-Establish relationship between area scale factor and determinant
-Calculate area scale factors for transformations
-Apply determinant to find area changes
-Solve problems involving area transformations

-Demonstrate inverse transformations geometrically
-Practice finding inverse matrices algebraically
-Verify that A × A⁻¹ = I
-Apply inverse transformations to solve problems

-Measure areas of objects and images using grid paper
-Calculate determinants and compare with area ratios
-Practice with various transformation types
-Verify the relationship: ASF =
Exercise books
-Manila paper
-Ruler
-Chalk/markers
det A
KLB Secondary Mathematics Form 4, Pages 24-26
2 6
Matrices and Transformation
Shear Transformations
Stretch Transformations
By the end of the lesson, the learner should be able to:

-Define shear transformation and its properties
-Identify invariant lines in shear transformations
-Construct matrices for shear transformations
-Apply shear transformations to geometric objects

-Demonstrate shear using cardboard models
-Identify x-axis and y-axis invariant shears
-Practice constructing shear matrices
-Apply shears to triangles and rectangles
Exercise books
-Cardboard pieces
-Manila paper
-Ruler
-Rubber bands
KLB Secondary Mathematics Form 4, Pages 28-34
2 7
Matrices and Transformation
Combined Shear and Stretch Problems
By the end of the lesson, the learner should be able to:

-Apply shear and stretch transformations in combination
-Solve complex transformation problems
-Identify transformation types from matrices
-Calculate areas under shear and stretch transformations

-Work through complex transformation sequences
-Practice identifying transformation types
-Calculate area changes under different transformations
-Solve real-world applications
Exercise books
-Manila paper
-Ruler
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 28-34
3 1
Matrices and Transformation
Statistics II
Isometric and Non-isometric Transformations
Introduction to Advanced Statistics
By the end of the lesson, the learner should be able to:

-Distinguish between isometric and non-isometric transformations
-Classify transformations based on shape and size preservation
-Identify isometric transformations from matrices
-Apply classification to solve problems

-Compare congruent and non-congruent images using cutouts
-Classify transformations systematically
-Practice identification from matrices
-Discuss real-world applications of each type
Exercise books
-Paper cutouts
-Manila paper
-Ruler
-Real data examples
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 35-38
3 2
Statistics II
Working Mean Concept
By the end of the lesson, the learner should be able to:

-Define working mean (assumed mean)
-Explain why working mean simplifies calculations
-Identify appropriate working mean values
-Apply working mean to reduce calculation errors

-Demonstrate calculation difficulties with large numbers
-Show how working mean simplifies arithmetic
-Practice selecting suitable working means
-Compare results with and without working mean
Exercise books
-Manila paper
-Sample datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 39-42
3 3
Statistics II
Mean Using Working Mean - Simple Data
Mean Using Working Mean - Frequency Tables
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for ungrouped data
-Apply the formula: mean = working mean + mean of deviations
-Verify results using direct calculation method
-Solve problems with whole numbers

-Work through step-by-step examples on chalkboard
-Practice with student marks and heights data
-Verify answers using traditional method
-Individual practice with guided support
Exercise books
-Manila paper
-Student data
-Chalk/markers
-Community data
KLB Secondary Mathematics Form 4, Pages 42-48
3 4-5
Statistics II
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Calculate mean for grouped continuous data
-Select appropriate working mean for grouped data
-Use midpoints of class intervals correctly
-Apply working mean formula to grouped data

-Apply coding techniques with working mean
-Divide by class width to simplify further
-Use transformation methods efficiently
-Solve complex grouped data problems

-Use height/weight data of students in class
-Practice finding midpoints of class intervals
-Work through complex calculations step by step
-Students practice with agricultural production data

-Demonstrate coding method on chalkboard
-Show how dividing by class width helps
-Practice reverse calculations to get original mean
-Work with economic data from Kenya
Exercise books
-Manila paper
-Real datasets
-Chalk/markers
Exercise books
-Manila paper
-Economic data
-Chalk/markers
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 42-48
3 6
Statistics II
Calculating Quartiles for Ungrouped Data
By the end of the lesson, the learner should be able to:

-Find lower quartile, median, upper quartile for raw data
-Apply the position formulas correctly
-Arrange data in ascending order systematically
-Interpret quartile values in context

-Practice with test scores from the class
-Arrange data systematically on chalkboard
-Calculate Q1, Q2, Q3 step by step
-Students work with their own datasets
Exercise books
-Manila paper
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 7
Statistics II
Quartiles for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate quartiles using interpolation formula
-Identify quartile classes correctly
-Apply the formula: Q = L + [(n/4 - CF)/f] × h
-Solve problems with continuous grouped data

-Work through detailed examples on chalkboard
-Practice identifying quartile positions
-Use cumulative frequency systematically
-Apply to real examination grade data
Exercise books
-Manila paper
-Grade data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
4 1
Statistics II
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency
By the end of the lesson, the learner should be able to:

-Calculate specific deciles and percentiles
-Apply interpolation formulas for deciles/percentiles
-Interpret decile and percentile positions
-Use these measures for comparative analysis

-Calculate specific percentiles for class test scores
-Find deciles for sports performance data
-Compare students' positions using percentiles
-Practice with national examination statistics
Exercise books
-Manila paper
-Performance data
-Chalk/markers
-Ruler
-Class data
KLB Secondary Mathematics Form 4, Pages 49-52
4 2
Statistics II
Drawing Cumulative Frequency Curves (Ogives)
By the end of the lesson, the learner should be able to:

-Draw accurate ogives using proper scales
-Plot cumulative frequency against upper boundaries
-Create smooth curves through plotted points
-Label axes and scales correctly

-Practice plotting on large manila paper
-Use rulers for accurate scales
-Demonstrate smooth curve drawing technique
-Students create their own ogives
Exercise books
-Manila paper
-Ruler
-Pencils
KLB Secondary Mathematics Form 4, Pages 52-60
4 3
Statistics II
Reading Values from Ogives
Applications of Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
-Real problem datasets
KLB Secondary Mathematics Form 4, Pages 52-60
4 4-5
Statistics II
Introduction to Measures of Dispersion
Range and Interquartile Range
Mean Absolute Deviation
By the end of the lesson, the learner should be able to:

-Define dispersion and its importance
-Understand limitations of central tendency alone
-Compare datasets with same mean but different spread
-Identify different measures of dispersion

-Calculate range for different datasets
-Find interquartile range (Q3 - Q1)
-Calculate quartile deviation (semi-interquartile range)
-Compare advantages and limitations of each measure

-Compare test scores of two classes with same mean
-Show how different spreads affect interpretation
-Discuss variability in real-world data
-Introduce range as simplest measure

-Calculate range for student heights in class
-Find IQR for the same data
-Discuss effect of outliers on range
-Compare IQR stability with range
Exercise books
-Manila paper
-Comparative datasets
-Chalk/markers
Exercise books
-Manila paper
-Student data
-Measuring tape
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 60-65
4 6
Statistics II
Introduction to Variance
By the end of the lesson, the learner should be able to:

-Define variance as mean of squared deviations
-Calculate variance using definition formula
-Understand why deviations are squared
-Compare variance with other dispersion measures

-Work through variance calculation step by step
-Explain squaring deviations eliminates negatives
-Calculate variance for simple datasets
-Compare with mean absolute deviation
Exercise books
-Manila paper
-Simple datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
4 7
Statistics II
Variance Using Alternative Formula
By the end of the lesson, the learner should be able to:

-Apply the formula: σ² = (Σx²/n) - x̄²
-Use alternative variance formula efficiently
-Compare computational methods
-Solve variance problems for frequency data

-Demonstrate both variance formulas
-Show computational advantages of alternative formula
-Practice with frequency tables
-Students choose efficient method
Exercise books
-Manila paper
-Frequency data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 1
Statistics II
Standard Deviation Calculations
Standard Deviation for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate standard deviation as square root of variance
-Apply standard deviation to ungrouped data
-Use standard deviation to compare datasets
-Interpret standard deviation in practical contexts

-Calculate SD for student exam scores
-Compare SD values for different subjects
-Interpret what high/low SD means
-Use SD to identify consistent performance
Exercise books
-Manila paper
-Exam score data
-Chalk/markers
-Agricultural data
KLB Secondary Mathematics Form 4, Pages 65-70
5 2
Statistics II
Advanced Standard Deviation Techniques
By the end of the lesson, the learner should be able to:

-Apply transformation properties of standard deviation
-Use coding with class width division
-Solve problems with multiple transformations
-Verify results using different methods

-Demonstrate coding transformations
-Show how SD changes with data transformations
-Practice reverse calculations
-Verify using alternative methods
Exercise books
-Manila paper
-Transformation examples
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 3
Loci
Introduction to Loci
Basic Locus Concepts and Laws
By the end of the lesson, the learner should be able to:

-Define locus and understand its meaning
-Distinguish between locus of points, lines, and regions
-Identify real-world examples of loci
-Understand the concept of movement according to given laws

-Demonstrate door movement to show path traced by corner
-Use string and pencil to show circular locus
-Discuss examples: clock hands, pendulum swing
-Students trace paths of moving objects
Exercise books
-Manila paper
-String
-Chalk/markers
-Real objects
KLB Secondary Mathematics Form 4, Pages 73-75
5 4-5
Loci
Perpendicular Bisector Locus
Properties and Applications of Perpendicular Bisector
Locus of Points at Fixed Distance from a Point
By the end of the lesson, the learner should be able to:

-Define perpendicular bisector locus
-Construct perpendicular bisector using compass and ruler
-Prove that points on perpendicular bisector are equidistant from endpoints
-Apply perpendicular bisector to solve problems

-Understand perpendicular bisector in 3D space
-Apply perpendicular bisector to find circumcenters
-Solve practical problems using perpendicular bisector
-Use perpendicular bisector in triangle constructions

-Construct perpendicular bisector on manila paper
-Measure distances to verify equidistance property
-Use folding method to find perpendicular bisector
-Practice with different line segments

-Find circumcenter of triangle using perpendicular bisectors
-Solve water pipe problems (equidistant from two points)
-Apply to real-world location problems
-Practice with various triangle types
Exercise books
-Manila paper
-Compass
-Ruler
Exercise books
-Manila paper
-Compass
-Ruler
-String
KLB Secondary Mathematics Form 4, Pages 75-82
5 6
Loci
Locus of Points at Fixed Distance from a Line
By the end of the lesson, the learner should be able to:

-Define locus of points at fixed distance from straight line
-Construct parallel lines at given distances
-Understand cylindrical surface in 3D
-Apply to practical problems like road margins

-Construct parallel lines using ruler and set square
-Mark points at equal distances from given line
-Discuss road design, river banks, field boundaries
-Practice with various distances and orientations
Exercise books
-Manila paper
-Ruler
-Set square
KLB Secondary Mathematics Form 4, Pages 75-82
5 7
Loci
Angle Bisector Locus
Properties and Applications of Angle Bisector
By the end of the lesson, the learner should be able to:

-Define angle bisector locus
-Construct angle bisectors using compass and ruler
-Prove equidistance property of angle bisector
-Apply angle bisector to find incenters

-Construct angle bisectors for various angles
-Verify equidistance from angle arms
-Find incenter of triangle using angle bisectors
-Practice with acute, obtuse, and right angles
Exercise books
-Manila paper
-Compass
-Protractor
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
6 1
Loci
Constant Angle Locus
By the end of the lesson, the learner should be able to:

-Understand constant angle locus concept
-Construct constant angle loci using arc method
-Apply circle theorems to constant angle problems
-Solve problems involving angles in semicircles

-Demonstrate constant angle using protractor
-Construct arc passing through two points
-Use angles in semicircle property
-Practice with different angle measures
Exercise books
-Manila paper
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
6 2
Loci
Advanced Constant Angle Constructions
By the end of the lesson, the learner should be able to:

-Construct constant angle loci for various angles
-Find centers of constant angle arcs
-Solve complex constant angle problems
-Apply to geometric theorem proving

-Find centers for 60°, 90°, 120° angle loci
-Construct major and minor arcs
-Solve problems involving multiple angle constraints
-Verify constructions using measurement
Exercise books
-Manila paper
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
6 3
Loci
Introduction to Intersecting Loci
Intersecting Circles and Lines
By the end of the lesson, the learner should be able to:

-Understand concept of intersecting loci
-Identify points satisfying multiple conditions
-Find intersection points of two loci
-Apply intersecting loci to solve practical problems

-Demonstrate intersection of two circles
-Find points equidistant from two points AND at fixed distance from third point
-Solve simple two-condition problems
-Practice identifying intersection points
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 83-89
6 4-5
Loci
Triangle Centers Using Intersecting Loci
Complex Intersecting Loci Problems
Introduction to Loci of Inequalities
By the end of the lesson, the learner should be able to:

-Find circumcenter using perpendicular bisector intersections
-Locate incenter using angle bisector intersections
-Determine centroid and orthocenter
-Apply triangle centers to solve problems

-Solve problems with three or more conditions
-Find regions satisfying multiple constraints
-Apply intersecting loci to optimization problems
-Use systematic approach to complex problems

-Construct all four triangle centers
-Compare properties of different triangle centers
-Use triangle centers in geometric proofs
-Solve problems involving triangle center properties

-Solve treasure hunt type problems
-Find optimal locations for facilities
-Apply to surveying and engineering problems
-Practice systematic problem-solving approach
Exercise books
-Manila paper
-Compass
-Ruler
Exercise books
-Manila paper
-Compass
-Real-world scenarios
-Ruler
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 83-89
6 6
Loci
Distance Inequality Loci
By the end of the lesson, the learner should be able to:

-Represent distance inequalities graphically
-Solve problems with "less than" and "greater than" distances
-Find regions satisfying distance constraints
-Apply to safety zone problems

-Shade regions inside and outside circles
-Solve exclusion zone problems
-Apply to communication range problems
-Practice with multiple distance constraints
Exercise books
-Manila paper
-Compass
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 89-92
6 7
Loci
Combined Inequality Loci
Advanced Inequality Applications
By the end of the lesson, the learner should be able to:

-Solve problems with multiple inequality constraints
-Find intersection regions of inequality loci
-Apply to optimization and feasibility problems
-Use systematic shading techniques

-Find feasible regions for multiple constraints
-Solve planning problems with restrictions
-Apply to resource allocation scenarios
-Practice systematic region identification
Exercise books
-Manila paper
-Ruler
-Colored pencils
-Real problem data
KLB Secondary Mathematics Form 4, Pages 89-92
7

Mid term exams

8

Mid term break

9 1
Loci
Introduction to Loci Involving Chords
By the end of the lesson, the learner should be able to:

-Review chord properties in circles
-Understand perpendicular bisector of chords
-Apply chord theorems to loci problems
-Construct equal chords in circles

-Review chord bisector theorem
-Construct chords of given lengths
-Find centers using chord properties
-Practice with chord intersection theorems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
9 2
Loci
Chord-Based Constructions
By the end of the lesson, the learner should be able to:

-Construct circles through three points using chords
-Find loci of chord midpoints
-Solve problems with intersecting chords
-Apply chord properties to geometric constructions

-Construct circles using three non-collinear points
-Find locus of midpoints of parallel chords
-Solve chord intersection problems
-Practice with chord-tangent relationships
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
9 3
Loci
Advanced Chord Problems
Integration of All Loci Types
By the end of the lesson, the learner should be able to:

-Solve complex problems involving multiple chords
-Apply power of point theorem
-Find loci related to chord properties
-Use chords in circle geometry proofs

-Apply intersecting chords theorem
-Solve problems with chord-secant relationships
-Find loci of points with equal power
-Practice with tangent-chord angles
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
9 4-5
Trigonometry III
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Recall sin, cos, tan from right-angled triangles
-Apply Pythagoras theorem with trigonometry
-Use basic trigonometric ratios to solve problems
-Establish relationship between trigonometric ratios

-Understand the derivation of fundamental identity
-Apply Pythagoras theorem to unit circle
-Use the identity to solve trigonometric equations
-Convert between sin, cos using the identity

-Review right-angled triangle ratios from Form 2
-Practice calculating unknown sides and angles
-Work through examples using SOH-CAH-TOA
-Solve simple practical problems

-Demonstrate using right-angled triangle with hypotenuse 1
-Show algebraic derivation step by step
-Practice substituting values to verify identity
-Solve equations using the fundamental identity
Exercise books
-Manila paper
-Rulers
-Calculators (if available)
Exercise books
-Manila paper
-Unit circle diagrams
-Calculators
-Trigonometric tables
-Real-world examples
KLB Secondary Mathematics Form 4, Pages 99-103
9 6
Trigonometry III
Additional Trigonometric Identities
By the end of the lesson, the learner should be able to:

-Derive and apply tan θ = sin θ/cos θ
-Use reciprocal ratios (sec, cosec, cot)
-Apply multiple identities in problem solving
-Verify trigonometric identities algebraically

-Demonstrate relationship between tan, sin, cos
-Introduce reciprocal ratios with examples
-Practice identity verification techniques
-Solve composite identity problems
Exercise books
-Manila paper
-Identity reference sheet
-Calculators
KLB Secondary Mathematics Form 4, Pages 99-103
9 7
Trigonometry III
Introduction to Waves
Sine and Cosine Waves
By the end of the lesson, the learner should be able to:

-Define amplitude and period of waves
-Understand wave characteristics and properties
-Identify amplitude and period from graphs
-Connect waves to trigonometric functions

-Use physical demonstrations with string/rope
-Draw simple wave patterns on manila paper
-Measure amplitude and period from wave diagrams
-Discuss real-world wave examples (sound, light)
Exercise books
-Manila paper
-String/rope
-Wave diagrams
-Rulers
-Graph paper (if available)
KLB Secondary Mathematics Form 4, Pages 103-109
10 1
Trigonometry III
Transformations of Sine Waves
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on amplitude
-Plot graphs of y = k sin x for different values of k
-Compare transformed waves with basic sine wave
-Apply amplitude changes to real situations

-Plot y = 2 sin x, y = 3 sin x on manila paper
-Compare amplitudes with y = sin x
-Demonstrate stretching effect of coefficient
-Apply to sound volume or signal strength examples
Exercise books
-Manila paper
-Colored pencils
-Rulers
KLB Secondary Mathematics Form 4, Pages 103-109
10 2
Trigonometry III
Period Changes in Trigonometric Functions
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on period
-Plot graphs of y = sin(bx) for different values of b
-Calculate periods of transformed functions
-Apply period changes to cyclical phenomena

-Plot y = sin(2x), y = sin(x/2) on manila paper
-Compare periods with y = sin x
-Calculate period using formula 360°/b
-Apply to frequency and musical pitch examples
Exercise books
-Manila paper
-Rulers
-Period calculation charts
KLB Secondary Mathematics Form 4, Pages 103-109
10 3
Trigonometry III
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts
By the end of the lesson, the learner should be able to:

-Plot graphs of y = a sin(bx) functions
-Identify both amplitude and period changes
-Solve problems with multiple transformations
-Apply to complex wave phenomena

-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper
-Calculate both amplitude and period for each function
-Compare multiple transformed waves
-Apply to radio waves or tidal patterns
Exercise books
-Manila paper
-Rulers
-Transformation examples
-Colored pencils
-Phase shift examples
KLB Secondary Mathematics Form 4, Pages 103-109
10 4-5
Trigonometry III
General Trigonometric Functions
Cosine Wave Transformations
Introduction to Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Work with y = a sin(bx + c) functions
-Identify amplitude, period, and phase angle
-Plot complex trigonometric functions
-Solve problems involving all transformations

-Apply transformations to cosine functions
-Plot y = a cos(bx + c) functions
-Compare cosine and sine transformations
-Use cosine functions in modeling

-Plot y = 2 sin(3x + 60°) step by step
-Identify all transformation parameters
-Practice reading values from complex waves
-Apply to real-world periodic phenomena

-Plot various cosine transformations on manila paper
-Compare with equivalent sine transformations
-Practice identifying cosine wave parameters
-Model temperature variations using cosine
Exercise books
-Manila paper
-Rulers
-Complex function examples
Exercise books
-Manila paper
-Rulers
-Temperature data
-Unit circle diagrams
-Trigonometric tables
KLB Secondary Mathematics Form 4, Pages 103-109
10 6
Trigonometry III
Solving Basic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Solve equations of form sin x = k, cos x = k
-Find all solutions in specified ranges
-Use symmetry properties of trigonometric functions
-Apply inverse trigonometric functions

-Work through sin x = 0.6 step by step
-Find all solutions between 0° and 360°
-Use calculator to find inverse trigonometric values
-Practice with multiple basic equations
Exercise books
-Manila paper
-Calculators
-Solution worksheets
KLB Secondary Mathematics Form 4, Pages 109-112
10 7
Trigonometry III
Quadratic Trigonometric Equations
Equations Involving Multiple Angles
By the end of the lesson, the learner should be able to:

-Solve equations like sin²x - sin x = 0
-Apply factoring techniques to trigonometric equations
-Use substitution methods for complex equations
-Find all solutions systematically

-Demonstrate substitution method (let y = sin x)
-Factor quadratic expressions in trigonometry
-Solve resulting quadratic equations
-Back-substitute to find angle solutions
Exercise books
-Manila paper
-Factoring techniques
-Substitution examples
-Multiple angle examples
-Real applications
KLB Secondary Mathematics Form 4, Pages 109-112
11 1
Trigonometry III
Using Graphs to Solve Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Solve equations graphically using intersections
-Plot trigonometric functions on same axes
-Find intersection points as equation solutions
-Verify algebraic solutions graphically

-Plot y = sin x and y = 0.5 on same axes
-Identify intersection points as solutions
-Use graphical method for complex equations
-Compare graphical and algebraic solutions
Exercise books
-Manila paper
-Rulers
-Graphing examples
KLB Secondary Mathematics Form 4, Pages 109-112
11 2
Trigonometry III
Three Dimensional Geometry
Trigonometric Equations with Identities
Introduction to 3D Concepts
By the end of the lesson, the learner should be able to:

-Use trigonometric identities to solve equations
-Apply sin²θ + cos²θ = 1 in equation solving
-Convert between different trigonometric functions
-Solve equations using multiple identities

-Solve equations using fundamental identity
-Convert tan equations to sin/cos form
-Practice identity-based equation solving
-Work through complex multi-step problems
Exercise books
-Manila paper
-Identity reference sheets
-Complex examples
-Cardboard boxes
-Real 3D objects
KLB Secondary Mathematics Form 4, Pages 109-112
11 3
Three Dimensional Geometry
Properties of Common Solids
By the end of the lesson, the learner should be able to:

-Identify properties of cubes, cuboids, pyramids
-Count faces, edges, vertices systematically
-Apply Euler's formula (V - E + F = 2)
-Classify solids by their geometric properties

-Make models using cardboard and tape
-Create table of properties for different solids
-Verify Euler's formula with physical models
-Compare prisms and pyramids systematically
Exercise books
-Cardboard
-Scissors
-Tape/glue
KLB Secondary Mathematics Form 4, Pages 113-115
11 4-5
Three Dimensional Geometry
Understanding Planes in 3D Space
Lines in 3D Space
Introduction to Projections
By the end of the lesson, the learner should be able to:

-Define planes and their properties in 3D
-Identify parallel and intersecting planes
-Understand that planes extend infinitely
-Recognize planes formed by faces of solids

-Understand different types of lines in 3D
-Identify parallel, intersecting, and skew lines
-Recognize that skew lines don't intersect and aren't parallel
-Find examples of different line relationships

-Use books/boards to represent planes
-Demonstrate parallel planes using multiple books
-Show intersecting planes using book corners
-Identify planes in classroom architecture

-Use rulers/sticks to demonstrate line relationships
-Show parallel lines using parallel rulers
-Demonstrate skew lines using classroom edges
-Practice identifying line relationships in models
Exercise books
-Manila paper
-Books/boards
-Classroom examples
Exercise books
-Rulers/sticks
-3D models
-Manila paper
-Light source
KLB Secondary Mathematics Form 4, Pages 113-115
11 6
Three Dimensional Geometry
Angle Between Line and Plane - Concept
By the end of the lesson, the learner should be able to:

-Define angle between line and plane
-Understand that angle is measured with projection
-Identify the projection of line on plane
-Recognize when line is perpendicular to plane

-Demonstrate using stick against book (plane)
-Show that angle is with projection, not plane itself
-Use protractor to measure angles with projections
-Identify perpendicular lines to planes
Exercise books
-Manila paper
-Protractor
-Rulers/sticks
KLB Secondary Mathematics Form 4, Pages 115-123
11 7
Three Dimensional Geometry
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems
By the end of the lesson, the learner should be able to:

-Calculate angles using right-angled triangles
-Apply trigonometry to 3D angle problems
-Use Pythagoras theorem in 3D contexts
-Solve problems involving cuboids and pyramids

-Work through step-by-step calculations
-Use trigonometric ratios in 3D problems
-Practice with cuboid diagonal problems
-Apply to pyramid and cone angle calculations
Exercise books
-Manila paper
-Calculators
-3D problem diagrams
-Real scenarios
-Problem sets
KLB Secondary Mathematics Form 4, Pages 115-123
12 1
Three Dimensional Geometry
Introduction to Plane-Plane Angles
By the end of the lesson, the learner should be able to:

-Define angle between two planes
-Understand concept of dihedral angles
-Identify line of intersection of two planes
-Find perpendiculars to intersection line

-Use two books to demonstrate intersecting planes
-Show how planes meet along an edge
-Identify dihedral angles in classroom
-Demonstrate using folded paper
Exercise books
-Manila paper
-Books
-Folded paper
KLB Secondary Mathematics Form 4, Pages 123-128
12 2
Three Dimensional Geometry
Finding Angles Between Planes
Complex Plane-Plane Angle Problems
By the end of the lesson, the learner should be able to:

-Construct perpendiculars to find plane angles
-Apply trigonometry to calculate dihedral angles
-Use right-angled triangles in plane intersection
-Solve angle problems in prisms and pyramids

-Work through construction method step-by-step
-Practice finding intersection lines first
-Calculate angles in triangular prisms
-Apply to roof and building angle problems
Exercise books
-Manila paper
-Protractor
-Building examples
-Complex 3D models
-Architecture examples
KLB Secondary Mathematics Form 4, Pages 123-128
12 3
Three Dimensional Geometry
Practical Applications of Plane Angles
By the end of the lesson, the learner should be able to:

-Apply plane angles to real-world problems
-Solve engineering and construction problems
-Calculate angles in roof structures
-Use in navigation and surveying contexts

-Calculate roof pitch angles
-Solve bridge construction angle problems
-Apply to mining and tunnel excavation
-Use in aerial navigation problems
Exercise books
-Manila paper
-Real engineering data
-Construction examples
KLB Secondary Mathematics Form 4, Pages 123-128
12 4-5
Three Dimensional Geometry
Understanding Skew Lines
Angle Between Skew Lines
Advanced Skew Line Problems
By the end of the lesson, the learner should be able to:

-Define skew lines and their properties
-Distinguish skew lines from parallel/intersecting lines
-Identify skew lines in 3D models
-Understand that skew lines exist only in 3D

-Understand how to find angle between skew lines
-Apply translation method for skew line angles
-Use parallel line properties in 3D
-Calculate angles by creating intersecting lines

-Use classroom edges to show skew lines
-Demonstrate with two rulers in space
-Identify skew lines in building frameworks
-Practice recognition in various 3D shapes

-Demonstrate translation method using rulers
-Translate one line to intersect the other
-Practice with cuboid edge problems
-Apply to framework and structure problems
Exercise books
-Manila paper
-Rulers
-Building frameworks
Exercise books
-Manila paper
-Rulers
-Translation examples
-Engineering examples
-Structure diagrams
KLB Secondary Mathematics Form 4, Pages 128-135
12 6
Three Dimensional Geometry
Distance Calculations in 3D
By the end of the lesson, the learner should be able to:

-Calculate distances between points in 3D
-Find shortest distances between lines and planes
-Apply 3D Pythagoras theorem
-Use distance formula in coordinate geometry

-Calculate space diagonals in cuboids
-Find distances from points to planes
-Apply 3D distance formula systematically
-Solve minimum distance problems
Exercise books
-Manila paper
-Distance calculation charts
-3D coordinate examples
KLB Secondary Mathematics Form 4, Pages 115-135
12 7
Three Dimensional Geometry
Volume and Surface Area Applications
Coordinate Geometry in 3D
Integration with Trigonometry
By the end of the lesson, the learner should be able to:

-Connect 3D geometry to volume calculations
-Apply angle calculations to surface area problems
-Use 3D relationships in optimization
-Solve practical volume and area problems

-Calculate slant heights using 3D angles
-Find surface areas of pyramids using angles
-Apply to packaging and container problems
-Use in architectural space planning
Exercise books
-Manila paper
-Volume formulas
-Real containers
-3D coordinate grid
-Room corner reference
-Trigonometric tables
-Astronomy examples
KLB Secondary Mathematics Form 4, Pages 115-135
13

End of term Exams


Your Name Comes Here


Download

Feedback