If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 2 | 2 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation Using the Unit Square Method Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String -Chalk/markers -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 2 | 3 |
Matrices and Transformation
|
Matrix Multiplication for Combined Transformations
Single Matrix for Successive Transformations Inverse of a Transformation |
By the end of the
lesson, the learner
should be able to:
-Multiply 2×2 matrices to find combined transformations -Apply matrix multiplication rules correctly -Verify combined transformations geometrically -Solve problems involving multiple transformations |
-Practice matrix multiplication systematically on chalkboard -Verify results by applying to test objects -Work through complex transformation sequences -Check computations step by step |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 2 | 4 |
Matrices and Transformation
|
Properties of Inverse Transformations
Area Scale Factor and Determinant |
By the end of the
lesson, the learner
should be able to:
-Calculate determinants of 2×2 matrices -Use determinant formula for matrix inverses -Identify when inverse matrices exist -Apply inverse matrix formula efficiently |
-Practice determinant calculations on chalkboard -Use formula: A⁻¹ = (1/det A) × adj A -Identify singular matrices (det = 0) -Solve systems using inverse matrices |
Exercise books
-Manila paper -Ruler -Chalk/markers det A |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 2 | 5 |
Matrices and Transformation
|
Shear Transformations
Stretch Transformations |
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler -Rubber bands |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 2 | 6 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 2 | 7 |
Statistics II
|
Introduction to Advanced Statistics
|
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 3 | 1 |
Statistics II
|
Working Mean Concept
Mean Using Working Mean - Simple Data |
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers -Student data |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 3 | 2 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
Mean for Grouped Data Using Working Mean |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers -Real datasets |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 3 |
Statistics II
|
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya |
Exercise books
-Manila paper -Economic data -Chalk/markers -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 4 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
|
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 5 |
Statistics II
|
Quartiles for Grouped Data
Deciles and Percentiles Calculations |
By the end of the
lesson, the learner
should be able to:
-Calculate quartiles using interpolation formula -Identify quartile classes correctly -Apply the formula: Q = L + [(n/4 - CF)/f] × h -Solve problems with continuous grouped data |
-Work through detailed examples on chalkboard -Practice identifying quartile positions -Use cumulative frequency systematically -Apply to real examination grade data |
Exercise books
-Manila paper -Grade data -Chalk/markers -Performance data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 6 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 3 | 7 |
Statistics II
|
Reading Values from Ogives
|
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 4 | 1 |
Statistics II
|
Applications of Ogives
Introduction to Measures of Dispersion |
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 4 | 2 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 4 | 3 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 4 | 4 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 4 | 5 |
Statistics II
|
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 4 | 6 |
Loci
|
Introduction to Loci
Basic Locus Concepts and Laws |
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers -Real objects |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 4 | 7 |
Loci
|
Perpendicular Bisector Locus
Properties and Applications of Perpendicular Bisector |
By the end of the
lesson, the learner
should be able to:
-Define perpendicular bisector locus -Construct perpendicular bisector using compass and ruler -Prove that points on perpendicular bisector are equidistant from endpoints -Apply perpendicular bisector to solve problems |
-Construct perpendicular bisector on manila paper -Measure distances to verify equidistance property -Use folding method to find perpendicular bisector -Practice with different line segments |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 1 |
Loci
|
Locus of Points at Fixed Distance from a Point
|
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 2 |
Loci
|
Locus of Points at Fixed Distance from a Line
Angle Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 3 |
Loci
|
Properties and Applications of Angle Bisector
Constant Angle Locus |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 4 |
Loci
|
Advanced Constant Angle Constructions
Introduction to Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 5 |
Loci
|
Intersecting Circles and Lines
|
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 5 | 6 |
Loci
|
Triangle Centers Using Intersecting Loci
Complex Intersecting Loci Problems |
By the end of the
lesson, the learner
should be able to:
-Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems |
-Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties |
Exercise books
-Manila paper -Compass -Ruler -Real-world scenarios |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 5 | 7 |
Loci
|
Introduction to Loci of Inequalities
Distance Inequality Loci |
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Identify regions satisfying inequality conditions -Distinguish between boundary lines and regions -Apply inequality loci to practical constraints |
-Shade regions representing simple inequalities -Use broken and solid lines appropriately -Practice with distance inequalities -Apply to real-world constraint problems |
Exercise books
-Manila paper -Ruler -Colored pencils -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 6 | 1 |
Loci
|
Combined Inequality Loci
Advanced Inequality Applications |
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils -Real problem data |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 6 | 2 |
Loci
|
Introduction to Loci Involving Chords
|
By the end of the
lesson, the learner
should be able to:
-Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 6 | 3 |
Loci
|
Chord-Based Constructions
Advanced Chord Problems |
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 6 | 4 |
Loci
Trigonometry III |
Integration of All Loci Types
Review of Basic Trigonometric Ratios |
By the end of the
lesson, the learner
should be able to:
-Combine different types of loci in single problems -Solve comprehensive loci challenges -Apply multiple loci concepts simultaneously -Use loci in geometric investigations |
-Solve multi-step loci problems -Combine circle, line, and angle loci -Apply to real-world complex scenarios -Practice systematic problem-solving |
Exercise books
-Manila paper -Compass -Ruler -Rulers -Calculators (if available) |
KLB Secondary Mathematics Form 4, Pages 73-94
|
|
| 6 | 5 |
Trigonometry III
|
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Understand the derivation of fundamental identity -Apply Pythagoras theorem to unit circle -Use the identity to solve trigonometric equations -Convert between sin, cos using the identity |
-Demonstrate using right-angled triangle with hypotenuse 1 -Show algebraic derivation step by step -Practice substituting values to verify identity -Solve equations using the fundamental identity |
Exercise books
-Manila paper -Unit circle diagrams -Calculators -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 6 | 6 |
Trigonometry III
|
Additional Trigonometric Identities
|
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 6 | 7 |
Trigonometry III
|
Introduction to Waves
Sine and Cosine Waves |
By the end of the
lesson, the learner
should be able to:
-Define amplitude and period of waves -Understand wave characteristics and properties -Identify amplitude and period from graphs -Connect waves to trigonometric functions |
-Use physical demonstrations with string/rope -Draw simple wave patterns on manila paper -Measure amplitude and period from wave diagrams -Discuss real-world wave examples (sound, light) |
Exercise books
-Manila paper -String/rope -Wave diagrams -Rulers -Graph paper (if available) |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 7 | 1 |
Trigonometry III
|
Transformations of Sine Waves
Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 7 | 2 |
Trigonometry III
|
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 7 | 3 |
Trigonometry III
|
General Trigonometric Functions
|
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 7 |
MIS TERM EXAMS |
|||||||
| 8 |
MID TERM BREAK |
|||||||
| 9 | 1 |
Trigonometry III
|
Cosine Wave Transformations
Introduction to Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 9 | 2 |
Trigonometry III
|
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 3 |
Trigonometry III
|
Equations Involving Multiple Angles
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 4 |
Trigonometry III
|
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities |
By the end of the
lesson, the learner
should be able to:
-Solve equations graphically using intersections -Plot trigonometric functions on same axes -Find intersection points as equation solutions -Verify algebraic solutions graphically |
-Plot y = sin x and y = 0.5 on same axes -Identify intersection points as solutions -Use graphical method for complex equations -Compare graphical and algebraic solutions |
Exercise books
-Manila paper -Rulers -Graphing examples -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 5 |
Three Dimensional Geometry
|
Introduction to 3D Concepts
Properties of Common Solids |
By the end of the
lesson, the learner
should be able to:
-Distinguish between 1D, 2D, and 3D objects -Identify vertices, edges, and faces of 3D solids -Understand concepts of points, lines, and planes in space -Recognize real-world 3D objects and their properties |
-Use classroom objects to demonstrate dimensions -Count vertices, edges, faces of cardboard models -Identify 3D shapes in school environment -Discuss difference between area and volume |
Exercise books
-Cardboard boxes -Manila paper -Real 3D objects -Cardboard -Scissors -Tape/glue |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 9 | 6 |
Three Dimensional Geometry
|
Understanding Planes in 3D Space
Lines in 3D Space |
By the end of the
lesson, the learner
should be able to:
-Define planes and their properties in 3D -Identify parallel and intersecting planes -Understand that planes extend infinitely -Recognize planes formed by faces of solids |
-Use books/boards to represent planes -Demonstrate parallel planes using multiple books -Show intersecting planes using book corners -Identify planes in classroom architecture |
Exercise books
-Manila paper -Books/boards -Classroom examples -Rulers/sticks -3D models |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 9 | 7 |
Three Dimensional Geometry
|
Introduction to Projections
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of projection in 3D geometry -Find projections of points onto planes -Identify foot of perpendicular from point to plane -Apply projection concept to shadow problems |
-Use light source to create shadows (projections) -Drop perpendiculars from corners to floor -Identify projections in architectural drawings -Practice finding feet of perpendiculars |
Exercise books
-Manila paper -Light source -3D models |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 10 | 1 |
Three Dimensional Geometry
|
Angle Between Line and Plane - Concept
Calculating Angles Between Lines and Planes |
By the end of the
lesson, the learner
should be able to:
-Define angle between line and plane -Understand that angle is measured with projection -Identify the projection of line on plane -Recognize when line is perpendicular to plane |
-Demonstrate using stick against book (plane) -Show that angle is with projection, not plane itself -Use protractor to measure angles with projections -Identify perpendicular lines to planes |
Exercise books
-Manila paper -Protractor -Rulers/sticks -Calculators -3D problem diagrams |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 10 | 2 |
Three Dimensional Geometry
|
Advanced Line-Plane Angle Problems
Introduction to Plane-Plane Angles |
By the end of the
lesson, the learner
should be able to:
-Solve complex angle problems systematically -Apply coordinate geometry methods where helpful -Use multiple right-angled triangles in solutions -Verify answers using different approaches |
-Practice with tent and roof angle problems -Solve ladder against wall problems in 3D -Work through architectural angle calculations -Use real-world engineering applications |
Exercise books
-Manila paper -Real scenarios -Problem sets -Books -Folded paper |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 10 | 3 |
Three Dimensional Geometry
|
Finding Angles Between Planes
Complex Plane-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Construct perpendiculars to find plane angles -Apply trigonometry to calculate dihedral angles -Use right-angled triangles in plane intersection -Solve angle problems in prisms and pyramids |
-Work through construction method step-by-step -Practice finding intersection lines first -Calculate angles in triangular prisms -Apply to roof and building angle problems |
Exercise books
-Manila paper -Protractor -Building examples -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 10 | 4 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
|
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 10 | 5 |
Three Dimensional Geometry
|
Understanding Skew Lines
Angle Between Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Define skew lines and their properties -Distinguish skew lines from parallel/intersecting lines -Identify skew lines in 3D models -Understand that skew lines exist only in 3D |
-Use classroom edges to show skew lines -Demonstrate with two rulers in space -Identify skew lines in building frameworks -Practice recognition in various 3D shapes |
Exercise books
-Manila paper -Rulers -Building frameworks -Translation examples |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
| 10 | 6 |
Three Dimensional Geometry
|
Advanced Skew Line Problems
Distance Calculations in 3D |
By the end of the
lesson, the learner
should be able to:
-Solve complex skew line angle calculations -Apply to engineering and architectural problems -Use systematic approach for difficult problems -Combine with other 3D geometric concepts |
-Work through power line and cable problems -Solve bridge and tower construction angles -Practice with space frame structures -Apply to antenna and communication tower problems |
Exercise books
-Manila paper -Engineering examples -Structure diagrams -Distance calculation charts -3D coordinate examples |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
| 10 | 7 |
Three Dimensional Geometry
|
Volume and Surface Area Applications
Coordinate Geometry in 3D Integration with Trigonometry |
By the end of the
lesson, the learner
should be able to:
-Connect 3D geometry to volume calculations -Apply angle calculations to surface area problems -Use 3D relationships in optimization -Solve practical volume and area problems |
-Calculate slant heights using 3D angles -Find surface areas of pyramids using angles -Apply to packaging and container problems -Use in architectural space planning |
Exercise books
-Manila paper -Volume formulas -Real containers -3D coordinate grid -Room corner reference -Trigonometric tables -Astronomy examples |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 11 |
END TERM EXAMINATIONS |
|||||||
| 12 |
MARKING AND ENTRY OF MARKS |
|||||||
| 13 |
CLOSING TERM ONE |
|||||||
Your Name Comes Here