If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Compound Proportion and Rates of Work
|
Compound Proportions
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
|
KLB Mathematics Book Three Pg 288-290
|
|
| 2 | 2 |
Compound Proportion and Rates of Work
|
Compound Proportions
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
|
KLB Mathematics Book Three Pg 288-290
|
|
| 2 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
| 2 | 4 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
| 2 | 5 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
| 2 | 6 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
| 2 | 7 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
| 3 | 1 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
| 3 | 2 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
| 3 | 3 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
| 3 | 4 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
| 3 | 5 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
| 3 | 6 |
Compound Proportion and Rates of Work
|
Rates of Work and Mixtures
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 295-296
|
|
| 3 | 7 |
Compound Proportion and Rates of Work
|
Rates of Work and Mixtures
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 295-296
|
|
| 4 | 1 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
| 4 | 2 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
| 4 | 3 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
| 4 | 4 |
Graphical Methods
|
Graphs of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
|
KLB Mathematics Book Three Pg 300
|
|
| 4 | 5 |
Graphical Methods
|
Graphs of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
|
KLB Mathematics Book Three Pg 300
|
|
| 4 | 6 |
Graphical Methods
|
Tables and graphs integration
|
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
|
KLB Mathematics Book Three Pg 299-300
|
|
| 4 | 7 |
Graphical Methods
|
Tables and graphs integration
|
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
|
KLB Mathematics Book Three Pg 299-300
|
|
| 5 | 1 |
Graphical Methods
|
Introduction to cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
|
KLB Mathematics Book Three Pg 301
|
|
| 5 | 2 |
Graphical Methods
|
Introduction to cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
|
KLB Mathematics Book Three Pg 301
|
|
| 5 | 3 |
Graphical Methods
|
Introduction to cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
|
KLB Mathematics Book Three Pg 301
|
|
| 5 | 4 |
Graphical Methods
|
Graphical solution of cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
| 5 | 5 |
Graphical Methods
|
Graphical solution of cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
| 5 | 6 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
| 5 | 7 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
| 6 | 1 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
| 6 | 2 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
| 6 | 3 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
| 6 | 4 |
Graphical Methods
|
Average rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
| 6 | 5 |
Graphical Methods
|
Average rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
| 6 | 6 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
| 6 | 7 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
| 7 | 1 |
Graphical Methods
|
Introduction to instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
| 7 | 2 |
Graphical Methods
|
Introduction to instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
| 7 | 3 |
Graphical Methods
|
Introduction to instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
| 7 | 4 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
| 7 | 5 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
| 7 | 6 |
Graphical Methods
|
Advanced instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
|
KLB Mathematics Book Three Pg 310-315
|
|
| 7 | 6-7 |
Graphical Methods
|
Advanced instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
|
KLB Mathematics Book Three Pg 310-315
|
|
| 8 |
Mid term break |
|||||||
| 9 | 1 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
| 9 | 2 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
| 9 | 3 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
| 9 | 4 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
| 9 | 5 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
| 9 | 6 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 9 | 7 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 10 | 1 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
|
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 10 | 2 |
Matrices and Transformation
|
Finding the Matrix of a Transformation
|
By the end of the
lesson, the learner
should be able to:
-Determine the matrix representing a given transformation -Use coordinate geometry to find transformation matrices -Apply algebraic methods to find matrix elements -Verify transformation matrices using test points |
-Work through algebraic method of finding matrices -Use simultaneous equations to solve for matrix elements -Practice with different types of transformations -Verify results by applying matrix to test objects |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
| 10 | 3 |
Matrices and Transformation
|
Using the Unit Square Method
|
By the end of the
lesson, the learner
should be able to:
-Use unit square to find transformation matrices -Read matrix elements directly from unit square images -Apply unit square method to various transformations -Compare unit square method with algebraic method |
-Demonstrate unit square method systematically -Practice reading transformation matrices from diagrams -Apply method to reflections, rotations, enlargements -Compare efficiency of different methods |
Exercise books
-Manila paper -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
| 10 | 4 |
Matrices and Transformation
|
Successive Transformations
|
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 10 | 5 |
Matrices and Transformation
|
Matrix Multiplication for Combined Transformations
|
By the end of the
lesson, the learner
should be able to:
-Multiply 2×2 matrices to find combined transformations -Apply matrix multiplication rules correctly -Verify combined transformations geometrically -Solve problems involving multiple transformations |
-Practice matrix multiplication systematically on chalkboard -Verify results by applying to test objects -Work through complex transformation sequences -Check computations step by step |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 10 | 6 |
Matrices and Transformation
|
Matrix Multiplication for Combined Transformations
|
By the end of the
lesson, the learner
should be able to:
-Multiply 2×2 matrices to find combined transformations -Apply matrix multiplication rules correctly -Verify combined transformations geometrically -Solve problems involving multiple transformations |
-Practice matrix multiplication systematically on chalkboard -Verify results by applying to test objects -Work through complex transformation sequences -Check computations step by step |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 10 | 7 |
Matrices and Transformation
|
Single Matrix for Successive Transformations
|
By the end of the
lesson, the learner
should be able to:
-Find single matrix equivalent to successive transformations -Apply commutativity properties in matrix multiplication -Determine order of operations in transformations -Solve complex transformation problems efficiently |
-Demonstrate equivalence of successive and single matrices -Practice finding single equivalent matrices -Compare geometric and algebraic approaches -Solve real-world transformation problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 21-24
|
|
| 11 | 1 |
Matrices and Transformation
|
Inverse of a Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 11 | 2 |
Matrices and Transformation
|
Properties of Inverse Transformations
|
By the end of the
lesson, the learner
should be able to:
-Calculate determinants of 2×2 matrices -Use determinant formula for matrix inverses -Identify when inverse matrices exist -Apply inverse matrix formula efficiently |
-Practice determinant calculations on chalkboard -Use formula: A⁻¹ = (1/det A) × adj A -Identify singular matrices (det = 0) -Solve systems using inverse matrices |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 11 | 3 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
| 11 | 4 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
| 11 | 5 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
| 11 | 6 |
Matrices and Transformation
|
Shear Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 11 | 7 |
Matrices and Transformation
|
Shear Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 1 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 2 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 3 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 4 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 5 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 12 | 6 |
Matrices and Transformation
|
Isometric and Non-isometric Transformations
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
| 12 | 7 |
Matrices and Transformation
|
Isometric and Non-isometric Transformations
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
Your Name Comes Here