If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 3 | 1 |
Current Electricity (II)
|
Types of Resistors and Their Applications
|
By the end of the
lesson, the learner
should be able to:
Identify different types of resistors -Understand fixed and variable resistors -Read resistor color codes -Understand applications of special resistors -Use rheostats and potentiometers |
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable -Practice reading resistor color codes -Demonstration: rheostat and potentiometer operation -Discussion on thermistors and LDR applications -Practical applications in circuits |
Various resistor types
-Color code charts -Rheostat -Potentiometer -Thermistor -LDR -Multimeter -Circuit boards -Application examples |
KLB Secondary Physics Form 3, Pages 135-140
|
|
| 3 | 2 |
Current Electricity (II)
|
Measurement of Resistance - Voltmeter-Ammeter Method
|
By the end of the
lesson, the learner
should be able to:
Describe voltmeter-ammeter method -Set up circuits for resistance measurement -Calculate resistance from V and I readings -Understand limitations of the method -Analyze experimental errors |
Q/A on resistor types
-Setup of voltmeter-ammeter circuit -Measurement of voltage and current for unknown resistor -Calculation of resistance using R = V/I -Discussion on measurement errors and accuracy -Comparison with multimeter readings |
Unknown resistors
-Voltmeter -Ammeter -Rheostat -Connecting wires -Dry cells -Switches -Calculator -Multimeter for comparison |
KLB Secondary Physics Form 3, Pages 140-142
|
|
| 3 | 3-4 |
Current Electricity (II)
|
Wheatstone Bridge Method
Resistors in Series - Theory and Calculations |
By the end of the
lesson, the learner
should be able to:
Understand the principle of Wheatstone bridge -Set up Wheatstone bridge circuit -Balance the bridge for resistance measurement -Calculate unknown resistance using bridge equation -Appreciate accuracy of Wheatstone bridge method Derive formula for resistors in series -Calculate total resistance for series combination -Understand current and voltage in series circuits -Solve problems involving series resistors -Apply series resistance in circuit analysis |
Review voltmeter-ammeter method through Q/A
-Introduction to Wheatstone bridge principle -Demonstration of bridge balance condition -Setup and operation of Wheatstone bridge -Calculation using R₁/R₂ = R₃/R₄ -Comparison of accuracy with other methods Q/A on resistance measurement methods -Derivation of Rs = R₁ + R₂ + R₃... -Demonstration: measuring total resistance of series combination -Analysis of current (same) and voltage (divided) in series -Worked examples on series resistance calculations -Problem-solving session |
Wheatstone bridge apparatus
-Galvanometer -Known resistors -Unknown resistors -Connecting wires -Battery -Calculator -Bridge equation charts Resistors of known values -Multimeter -Connecting wires -Circuit boards -Calculator -Series circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 142-144
KLB Secondary Physics Form 3, Pages 144-147 |
|
| 3 | 5 |
Current Electricity (II)
|
Resistors in Parallel - Theory and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive formula for resistors in parallel -Calculate total resistance for parallel combination -Understand current and voltage in parallel circuits -Solve problems involving parallel resistors -Apply parallel resistance in circuit analysis |
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃... -Demonstration: measuring total resistance of parallel combination -Analysis of voltage (same) and current (divided) in parallel -Worked examples on parallel resistance calculations -Problem-solving session |
Resistors of known values
-Multimeter -Connecting wires -Circuit boards -Calculator -Parallel circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 147-150
|
|
| 4 | 1 |
Current Electricity (II)
|
Mixed Circuits - Series-Parallel Combinations
|
By the end of the
lesson, the learner
should be able to:
Analyze circuits with series-parallel combinations -Apply reduction techniques to complex circuits -Calculate total resistance of mixed circuits -Determine current and voltage in different branches -Solve complex circuit problems |
Q/A on parallel resistance
-Introduction to mixed circuit analysis techniques -Step-by-step reduction of complex circuits -Worked examples on series-parallel combinations -Problem-solving on mixed circuits -Discussion on circuit analysis strategies |
Various resistors
-Circuit boards -Connecting wires -Multimeter -Calculator -Complex circuit diagrams -Step-by-step analysis charts |
KLB Secondary Physics Form 3, Pages 150-153
|
|
| 4 | 2 |
Current Electricity (II)
|
Electromotive Force (EMF) and Terminal Voltage
|
By the end of the
lesson, the learner
should be able to:
Define electromotive force (EMF) -Distinguish between EMF and terminal voltage -Understand the concept of lost voltage -Relate EMF to work done by the cell -Measure EMF using high resistance voltmeter |
Review mixed circuits through Q/A
-Definition of EMF as work done per unit charge -Demonstration: measuring EMF with open circuit -Comparison of EMF and terminal voltage under load -Discussion on energy conversion in cells -Measurement techniques for EMF |
High resistance voltmeter
-Various cells -Switches -Resistors -Connecting wires -EMF measurement setup -Energy conversion charts |
KLB Secondary Physics Form 3, Pages 150-152
|
|
| 4 | 3-4 |
Current Electricity (II)
|
Internal Resistance of Cells
Cells in Series and Parallel |
By the end of the
lesson, the learner
should be able to:
Define internal resistance -Understand the relationship E = V + Ir -Calculate internal resistance experimentally -Understand factors affecting internal resistance -Apply internal resistance in circuit calculations Analyze cells connected in series -Analyze cells connected in parallel -Calculate total EMF and internal resistance -Understand advantages of different connections -Solve problems involving cell combinations |
Q/A on EMF concepts
-Introduction to internal resistance concept -Derivation of E = V + Ir relationship -Experiment: measuring internal resistance using different loads -Plotting E vs R graph to find internal resistance -Discussion on factors affecting internal resistance Review internal resistance through Q/A -Analysis of identical cells in series connection -Analysis of identical cells in parallel connection -Calculation of equivalent EMF and internal resistance -Discussion on practical applications and advantages -Problem-solving on cell combinations |
Various cells
-Resistors of different values -Voltmeter -Ammeter -Connecting wires -Graph paper -Calculator -Internal resistance apparatus Multiple identical cells -Connecting wires -Voltmeter -Ammeter -Resistors -Calculator -Cell combination diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 150-153
KLB Secondary Physics Form 3, Pages 152-153 |
|
| 4 | 5 |
Current Electricity (II)
Waves II |
Advanced Circuit Analysis and Problem Solving
Properties of waves |
By the end of the
lesson, the learner
should be able to:
Apply Kirchhoff's laws to complex circuits -Solve circuits with multiple sources -Analyze circuits with internal resistance -Use systematic approaches to circuit problems -Integrate all electricity concepts |
Q/A on cell combinations
-Application of Kirchhoff's current and voltage laws -Systematic approach to complex circuit analysis -Worked examples with multiple EMF sources -Problem-solving session covering all electricity topics -Discussion on practical circuit applications |
Complex circuit examples
-Calculator -Circuit analysis worksheets -Multiple EMF sources -Various resistors -Comprehensive problem sets -Kirchhoff's law charts Ripple tank, Straight vibrator, Water, Rulers, Stroboscope, Charts on wave properties |
KLB Secondary Physics Form 3, Pages 126-153
|
|
| 5 | 1 |
Waves II
|
Reflection of waves
Refraction of waves |
By the end of the
lesson, the learner
should be able to:
State laws of reflection for waves - Describe experiments showing reflection - Sketch reflected wave patterns - Explain behavior at different reflectors |
Review of reflection principles
- Experiment showing plane waves on straight reflector - Observation of circular waves on concave and convex reflectors - Drawing wavefront diagrams |
Ripple tank, Plane wave generator, Curved and straight reflectors, Graph paper, Pencils
Ripple tank, Glass plates, Water, Rulers for measurement, Frequency generator |
KLB Secondary Physics Form 3, Pages 158-161
|
|
| 5 | 2 |
Waves II
|
Diffraction of waves
Interference patterns |
By the end of the
lesson, the learner
should be able to:
Define diffraction - Explain factors affecting extent of diffraction - Describe experiments showing diffraction - Compare diffraction through different gap sizes |
Demonstration of diffraction using various gap sizes
- Observation of spreading effect - Investigation of relationship between gap size and wavelength - Practical measurements |
Ripple tank, Barriers with gaps, Various gap sizes, Measuring instruments, Wave generator
Two-point sources, Graph paper, Compass, Rulers, Ripple tank setup, Audio frequency generator |
KLB Secondary Physics Form 3, Pages 163-165
|
|
| 5 | 3-4 |
Waves II
|
Constructive and destructive interference
Stationary waves formation Modes of vibration in strings Vibrating air columns - closed pipes |
By the end of the
lesson, the learner
should be able to:
Distinguish between constructive and destructive interference - Explain conditions for each type - Demonstrate using sound waves - Calculate amplitudes in interference Derive expressions for fundamental frequency - Explain harmonics and overtones - Calculate frequencies of overtones - Demonstrate different modes |
Experiment with two loudspeakers
- Observation of loud and quiet regions - Mathematical analysis of amplitude addition - Problem solving on wave interference Discussion on fundamental and overtone frequencies - Mathematical derivation of frequency formulas - Practical demonstration of string vibrations - Problem solving |
Two loudspeakers, Audio generator, Microphone, Sound level meter, Connecting wires
Tuning fork, String, Pulley, Weights, Stroboscope, Measuring tape, Retort stands Sonometer, Tuning forks, Weights, Measuring instruments, Calculator, Formula charts Closed pipes of various lengths, Tuning forks, Water, Measuring cylinders, Resonance tubes |
KLB Secondary Physics Form 3, Pages 167-169
KLB Secondary Physics Form 3, Pages 170-172 |
|
| 5 | 5 |
Waves II
Electrostatics II |
Vibrating air columns - open pipes
Electric field patterns and charge distribution |
By the end of the
lesson, the learner
should be able to:
Compare open and closed pipe resonance - Derive frequency formulas for open pipes - Explain harmonic series differences - Solve numerical problems |
Experiment with open pipe resonance
- Comparison with closed pipe results - Mathematical problem solving - Summary of all wave phenomena |
Open pipes, Tuning forks, Sound level meters, Calculators, Summary charts, Past papers
High voltage source, Wire electrodes, Petri-dish, Castor oil, Chalk dust, Spherical and pear-shaped conductors, Proof-plane, Gold-leaf electroscope |
KLB Secondary Physics Form 3, Pages 174-176
|
|
| 6 | 1 |
Electrostatics II
|
Lightning arrestor and capacitance introduction
Factors affecting capacitance and types of capacitors |
By the end of the
lesson, the learner
should be able to:
Explain working principle of lightning arrestor - Describe charge concentration at sharp points - Define capacitance and state SI units - Describe parallel-plate capacitor structure |
Demonstration of charge concentration at points using wind-mill experiment
- Discussion on lightning protection applications - Introduction to capacitance concept - Demonstration of capacitor charging process |
Wind-mill model, Point charges, Lightning arrestor photos, Parallel-plate capacitors, Battery, Voltmeter, Milliammeter
Aluminium plates, Various dielectric materials, Electroscope, Paper capacitors, Electrolytic capacitors, Variable air capacitors, Measuring instruments |
KLB Secondary Physics Form 3, Pages 181-185
|
|
| 6 | 2 |
Electrostatics II
|
Capacitors in series and parallel
Energy stored in capacitors |
By the end of the
lesson, the learner
should be able to:
Derive effective capacitance for series combination - Derive effective capacitance for parallel combination - Explain charge and voltage relationships - Calculate individual charges and voltages |
Mathematical derivation of series formula (1/C = 1/C₁ + 1/C₂)
- Mathematical derivation of parallel formula (C = C₁ + C₂) - Problem solving with capacitor combinations - Practical verification using circuits |
Capacitors of different values, Voltmeters, Ammeters, Battery, Connecting wires, Calculators, Circuit boards
Charged capacitors, Energy calculation worksheets, Graphing materials, Calculators, Safety equipment |
KLB Secondary Physics Form 3, Pages 188-191
|
|
| 6 | 3-4 |
Electrostatics II
Heating Effect of Electric Current |
Complex capacitor problems
Applications of capacitors Introduction to heating effect Factors affecting heat produced - current and time |
By the end of the
lesson, the learner
should be able to:
Solve problems involving mixed series and parallel combinations - Calculate charges, voltages and energies in complex circuits - Apply energy conservation principles - Analyze capacitor charging and discharging Define heating effect of electric current - Explain mechanism of heat production in conductors - Investigate effect of current on resistance wire - Observe temperature changes in conductors |
Problem solving with complex capacitor networks
- Analysis of charging and discharging processes - Energy transfer calculations - Graph interpretation of charging curves Q/A on electric current from previous units - Experiment investigating effect of current on coil temperature - Observation of heating in different parts of circuit - Discussion on electron collision mechanism |
Complex circuit diagrams, Advanced problem worksheets, Graphing materials, Calculators, Past examination papers
Circuit diagrams, Smoothing circuit demo, Radio tuning circuits, Camera flash unit, Revision charts, Past examination papers Battery, Resistance wire coils, Ammeter, Variable resistor, Thermometer, Stopwatch, Connecting wires Resistance coils, Variable resistor, Ammeter, Thermometer, Stopwatch, Graph paper, Different current values |
KLB Secondary Physics Form 3, Pages 188-193
KLB Secondary Physics Form 3, Pages 195-197 |
|
| 6 | 5 |
Heating Effect of Electric Current
|
Factors affecting heat produced - resistance
Joule's law and electrical energy |
By the end of the
lesson, the learner
should be able to:
Investigate relationship between heat produced and resistance - Compare heating in different resistance wires - State H ∝ R relationship - Derive complete heating formula H = I²Rt |
Experiment using coils of different resistance
- Temperature measurements with constant current - Comparison of heating rates - Mathematical derivation of heating law |
Coils of different resistance, Ammeter, Thermometer, Measuring instruments, Stopwatch, Calculation worksheets
Formula charts, Calculators, Problem worksheets, Electrical devices for analysis |
KLB Secondary Physics Form 3, Pages 199-200
|
|
| 7 | 1 |
Heating Effect of Electric Current
|
Electrical power and energy calculations
Applications - electrical lighting and heating devices |
By the end of the
lesson, the learner
should be able to:
Define electrical power P = VI = I²R = V²/R - Calculate electrical energy W = Pt - Convert between different units (J, kWh) - Solve complex power problems |
Derivation of electrical power formulas
- Energy unit conversions - Problem solving on household appliances - Cost calculations for electrical consumption |
Calculators, Unit conversion charts, Household appliance ratings, Electricity bills, Problem sets
Filament lamps, Electric iron, Electric kettle, Heating elements, Energy saving bulbs, Appliance diagrams |
KLB Secondary Physics Form 3, Pages 201-202
|
|
| 7 | 2 |
Heating Effect of Electric Current
|
Electrical safety - fuses and circuit protection
Efficiency calculations and motor problems |
By the end of the
lesson, the learner
should be able to:
Explain working principle of fuses - Calculate appropriate fuse ratings - Describe safety measures in electrical installations - Analyze circuit protection methods |
Demonstration of fuse operation
- Calculation of fuse ratings for appliances - Discussion on electrical safety - Analysis of circuit protection devices |
Various fuses, Fuse holders, Circuit diagrams, Safety equipment demonstrations, Rating calculations
Motor specifications, Efficiency calculation worksheets, Power meters, Mechanical loading systems |
KLB Secondary Physics Form 3, Pages 203-204
|
|
| 7 | 3-4 |
Heating Effect of Electric Current
Quantity of Heat |
Series and parallel heating circuits
Heat capacity and specific heat capacity Determination of specific heat capacity - method of mixtures for solids Determination of specific heat capacity - electrical method |
By the end of the
lesson, the learner
should be able to:
Analyze heating in series and parallel circuits - Calculate power dissipation in different configurations - Compare heating effects in different circuit arrangements - Solve complex circuit problems Describe method of mixtures for solids - Perform experiment to determine specific heat capacity of metal - Apply heat balance principle - Calculate specific heat capacity from experimental data |
Circuit analysis of heating effects
- Comparison of series vs parallel heating - Power distribution calculations - Complex circuit problem solving Experiment using hot metal block in cold water - Measurement of temperatures and masses - Application of heat balance equation - Calculation of specific heat capacity from results |
Resistors in circuits, Ammeters, Voltmeters, Power calculation sheets, Circuit boards
Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply |
KLB Secondary Physics Form 3, Pages 200-204
KLB Secondary Physics Form 3, Pages 209-212 |
|
| 7 | 5 |
Quantity of Heat
|
Specific heat capacity of liquids and continuous flow method
Change of state and latent heat concepts |
By the end of the
lesson, the learner
should be able to:
Determine specific heat capacity of water by electrical method - Describe continuous flow method - Explain advantages of continuous flow method - Solve problems on specific heat capacity |
Electrical method experiment for water
- Discussion on continuous flow apparatus - Analysis of method advantages - Problem solving on specific heat calculations |
Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets
Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus |
KLB Secondary Physics Form 3, Pages 214-217
|
|
| 8 |
Midterm |
|||||||
| 9 | 1 |
Quantity of Heat
|
Specific latent heat of fusion
Specific latent heat of vaporization |
By the end of the
lesson, the learner
should be able to:
Define specific latent heat of fusion - Determine latent heat of ice by method of mixtures - Perform electrical method for latent heat - Calculate latent heat from experimental data |
Method of mixtures experiment using ice and warm water
- Electrical method using ice and immersion heater - Heat balance calculations - Determination of specific latent heat values |
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment |
KLB Secondary Physics Form 3, Pages 220-223
|
|
| 9 | 2 |
Quantity of Heat
|
Effects of pressure and impurities on melting and boiling points
Evaporation and cooling effects |
By the end of the
lesson, the learner
should be able to:
Investigate effect of pressure on melting point of ice - Demonstrate regelation phenomenon - Investigate effect of pressure on boiling point - Explain effect of impurities on phase transition temperatures |
Regelation experiment with ice and wire
- Pressure effect on boiling point using flask - Salt solution boiling point investigation - Discussion on pressure cooker working |
Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model
Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices |
KLB Secondary Physics Form 3, Pages 227-230
|
|
| 9 | 3-4 |
Gas Laws
|
Introduction to gas behavior and Boyle's Law
Boyle's Law experiments and calculations Boyle's Law applications and kinetic theory explanation Charles's Law Charles's Law applications and absolute temperature scale |
By the end of the
lesson, the learner
should be able to:
Describe relationship between pressure and volume of gases - State Boyle's Law - Demonstrate pressure-volume relationship using syringe - Plot P vs V and P vs 1/V graphs State Charles's Law for constant pressure processes - Demonstrate volume-temperature relationship - Perform experiments to verify V ∝ T relationship - Plot V vs T and V vs θ graphs |
Q/A on gas properties from previous studies
- Demonstration using syringe to show pressure-volume relationship - Discussion on molecular explanation - Introduction to gas law investigations Experiment using gas column in tube with varying temperature - Temperature and volume measurements - Graph plotting showing linear relationship - Discussion on absolute zero concept |
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios |
KLB Secondary Physics Form 3, Pages 235-237
KLB Secondary Physics Form 3, Pages 238-241 |
|
| 9 | 5 |
Gas Laws
|
Pressure Law (Gay-Lussac's Law)
Combined gas laws and ideal gas behavior |
By the end of the
lesson, the learner
should be able to:
State relationship between pressure and temperature at constant volume - Demonstrate pressure-temperature experiments - Verify P ∝ T relationship - Derive pressure law formula |
Experiment using constant volume gas with temperature variation
- Pressure measurements at different temperatures - Graph plotting of P vs T - Verification of linear relationship through origin |
Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials
Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts |
KLB Secondary Physics Form 3, Pages 242-244
|
|
| 10 | 1 |
Gas Laws
|
Kinetic theory of gases
Absolute zero and temperature scales |
By the end of the
lesson, the learner
should be able to:
State basic assumptions of kinetic theory - Explain gas laws using molecular motion - Relate temperature to average kinetic energy - Analyze molecular behavior in different conditions |
Discussion of kinetic theory postulates
- Molecular explanation of gas laws - Mathematical relationship between temperature and kinetic energy - Analysis of molecular motion at different temperatures |
Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials
Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators |
KLB Secondary Physics Form 3, Pages 244-245
|
|
| 10 | 2 |
Gas Laws
|
Comprehensive applications and problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve complex multi-step gas law problems - Apply gas laws to real-world situations - Analyze atmospheric and weather-related phenomena - Review all gas law concepts and applications |
Comprehensive problem solving session
- Analysis of weather balloons, scuba diving, and atmospheric pressure effects - Review of all gas laws - Preparation for examinations with complex scenarios |
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
|
KLB Secondary Physics Form 3, Pages 235-245
|
|
| 10 | 3-4 |
Thin Lenses
|
Types of Lenses and Effects on Light
Definition of Terms and Ray Diagrams Image Formation by Converging Lenses Image Formation by Diverging Lenses and Linear Magnification |
By the end of the
lesson, the learner
should be able to:
Define a lens and distinguish between convex and concave lenses; Describe the effect of lenses on parallel rays of light; Explain convergence and divergence of light rays; Identify practical examples of different lens types Locate images for different object positions using ray diagrams; Describe image characteristics (real/virtual, erect/inverted, magnified/diminished); Explain applications in telescope, camera, projector and magnifying glass; Understand relationship between object position and image properties |
Q/A on refraction concepts; Experiment 1.1 - investigating effects of lenses on parallel rays using sunlight and ray box; Demonstration of convergence and divergence; Group identification of lens types in everyday objects; Drawing and analysis of ray diagrams
Review of ray construction rules; Systematic ray diagram construction for objects at infinity, beyond 2F, at 2F, between F and 2F, at F, and between F and lens; Analysis of image characteristics for each position; Discussion of practical applications; Demonstration using lens, object and screen |
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available) Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available) Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment |
KLB Secondary Physics Form 4, Pages 1-6
KLB Secondary Physics Form 4, Pages 8-12 |
|
| 10 | 5 |
Thin Lenses
|
The Lens Formula
Determination of Focal Length I |
By the end of the
lesson, the learner
should be able to:
Derive the lens formula using similar triangles; Understand and apply the Real-is-positive sign convention; Use the lens formula to solve problems involving object distance, image distance and focal length; Solve Examples 4, 5, 6, and 7 from textbook |
Review of magnification concepts; Mathematical derivation of lens formula from similar triangles; Introduction to sign convention rules; Step-by-step solution of Examples 4-7; Practice problems applying lens formula to various situations; Group work on formula applications
|
Mathematical instruments; Charts showing derivation; Calculators; Worked examples; Sign convention chart; Practice worksheets
Converging lenses; Lens holders; Metre rule; White screen; Distant objects; Plane mirror; Pins; Cork; Glass rod; Light source; Cardboard with cross-wires |
KLB Secondary Physics Form 4, Pages 14-20
|
|
| 11 | 1 |
Thin Lenses
|
Determination of Focal Length II
Power of Lens and Simple Microscope |
By the end of the
lesson, the learner
should be able to:
Determine focal length using lens formula method (Experiment 1.4); Plot and analyze 1/u vs 1/v graphs; Determine focal length from displacement method (Experiment 1.5); Solve Examples 8, 9, and 10 involving graphical methods |
Review of previous focal length methods; Setup and performance of Experiment 1.4; Data collection and graph plotting; Analysis of Examples 8-10; Introduction to displacement method and conjugate points; Practical work with different graphical approaches
|
Experimental setup materials; Graph paper; Calculators; Data tables; Examples 8-10 from textbook; Materials for displacement method
Various lenses of different focal lengths; Magnifying glasses; Small objects; Calculators; Power calculation charts; Small print materials; Biological specimens |
KLB Secondary Physics Form 4, Pages 19-25
|
|
| 11 | 2 |
Thin Lenses
|
Compound Microscope
|
By the end of the
lesson, the learner
should be able to:
Describe structure and working of compound microscope; Explain functions of objective lens and eyepiece; Calculate total magnification; Solve Example 11 involving lens separation; Understand normal adjustment of compound microscope |
Review of simple microscope; Introduction to compound microscope structure; Ray tracing through objective and eyepiece; Mathematical analysis of total magnification; Step-by-step solution of Example 11; Practical demonstration with microscope parts
|
Compound microscope; Charts showing microscope structure; Lenses representing objective and eyepiece; Calculators; Example 11 from textbook; Ray tracing materials
|
KLB Secondary Physics Form 4, Pages 28-30
|
|
| 11 | 3-4 |
Thin Lenses
|
The Human Eye
Defects of Vision |
By the end of the
lesson, the learner
should be able to:
Describe structure of human eye and functions of each part; Explain accommodation process and role of ciliary muscles; Define near point and far point; Understand how eye focuses at different distances; Compare eye structure with camera Describe short sight (myopia) and its causes; Explain correction of myopia using diverging lenses; Describe long sight (hypermetropia) and its causes; Explain correction of hypermetropia using converging lenses; Draw ray diagrams showing defects and their corrections |
Introduction to human eye as natural optical instrument; Detailed study of eye structure using charts/models; Demonstration of accommodation using flexible lens model; Practical measurement of near and far points; Comparison table of eye vs camera similarities and differences
Q/A on normal vision and accommodation; Analysis of myopia - causes, effects, and correction; Ray diagrams for uncorrected and corrected myopia; Study of hypermetropia - causes, effects, and correction; Ray diagrams for uncorrected and corrected hypermetropia; Demonstration using appropriate lenses |
Charts/models of human eye; Torch for demonstrations; Eye model with flexible lens; Objects at various distances; Measuring equipment; Camera comparison charts
Charts showing vision defects; Converging and diverging lenses; Eye models; Spectacles with different lenses; Vision test materials; Ray diagram materials |
KLB Secondary Physics Form 4, Pages 30-32
KLB Secondary Physics Form 4, Pages 32-33 |
|
| 11 | 5 |
Thin Lenses
|
The Camera and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Describe camera structure and working principles; Explain functions of camera lens, shutter, aperture, and film; Compare camera with human eye highlighting similarities and differences; Review all applications of lenses in optical instruments |
Review of optical instruments studied; Analysis of camera components and their functions; Detailed comparison of camera and eye; Discussion of focusing mechanisms; Comprehensive review of lens applications in telescope, microscope, camera, spectacles, and magnifying glass
|
Camera (if available); Charts showing camera structure; Comparison tables; Review charts of all applications; Summary materials; Demonstration equipment
|
KLB Secondary Physics Form 4, Pages 33-35
|
|
| 12 | 1 |
Uniform Circular Motion
|
Introduction and Angular Displacement
Angular Velocity and Linear Velocity |
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
|
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment |
KLB Secondary Physics Form 4, Pages 37-39
|
|
| 12 | 2 |
Uniform Circular Motion
|
Centripetal Acceleration
|
By the end of the
lesson, the learner
should be able to:
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems |
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
|
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
|
KLB Secondary Physics Form 4, Pages 40-42
|
|
| 12 | 3-4 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
Experimental Investigation of Centripetal Force |
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook Perform Experiment 2.2 investigating speed vs radius relationship; Plot graphs of F vs ω² and v² vs r; Analyze experimental results and draw conclusions; Understand the relationship F ∝ mv²/r; Apply experimental findings to solve problems |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
Q/A on previous experiment results; Setup and performance of Experiment 2.2 - variation of speed with radius; Data collection for different radii; Graph plotting and analysis; Verification of theoretical relationships; Group analysis of experimental errors and improvements; Application of results to problem solving |
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets |
KLB Secondary Physics Form 4, Pages 42-47
KLB Secondary Physics Form 4, Pages 44-47 |
|
| 12 | 5 |
Uniform Circular Motion
|
Case Examples - Cars and Banking
|
By the end of the
lesson, the learner
should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles |
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
|
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
|
KLB Secondary Physics Form 4, Pages 47-50
|
|
| 13 | 1 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
|
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
|
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
|
KLB Secondary Physics Form 4, Pages 50-52
|
|
| 13 | 2 |
Uniform Circular Motion
|
Motion in Vertical Circle
|
By the end of the
lesson, the learner
should be able to:
Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion
|
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
|
KLB Secondary Physics Form 4, Pages 52-54
|
|
| 13 | 3-4 |
Uniform Circular Motion
Floating and Sinking |
Applications - Centrifuges and Satellites
Introduction and Cause of Upthrust |
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust |
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation |
KLB Secondary Physics Form 4, Pages 54-55
KLB Secondary Physics Form 4, Pages 58-63 |
|
| 13 | 5 |
Floating and Sinking
|
Upthrust in Gases and Archimedes' Principle
|
By the end of the
lesson, the learner
should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids |
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
|
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 60-66
|
|
| 14 | 1 |
Floating and Sinking
|
Law of Flotation and Applications
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships |
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
|
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
|
KLB Secondary Physics Form 4, Pages 64-69
|
|
| 14 | 2 |
Floating and Sinking
|
Relative Density Determination
|
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
|
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 69-74
|
|
| 14 | 3-4 |
Floating and Sinking
|
Archimedes' Principle and Moments
Applications - Hydrometer and Practical Instruments |
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions |
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating |
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration |
KLB Secondary Physics Form 4, Pages 71-74
KLB Secondary Physics Form 4, Pages 74-77 |
|
| 14 | 5 |
Floating and Sinking
|
Applications - Ships, Submarines, and Balloons
|
By the end of the
lesson, the learner
should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels |
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
|
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
|
KLB Secondary Physics Form 4, Pages 77
|
|
Your Name Comes Here