Home






SCHEME OF WORK
Physics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Reporting back to school and revision

2 1-2
Electrostatics II
Capacitors in series and parallel
Energy stored in capacitors
Complex capacitor problems
Applications of capacitors
By the end of the lesson, the learner should be able to:
Derive effective capacitance for series combination
- Derive effective capacitance for parallel combination
- Explain charge and voltage relationships
- Calculate individual charges and voltages
Solve problems involving mixed series and parallel combinations
- Calculate charges, voltages and energies in complex circuits
- Apply energy conservation principles
- Analyze capacitor charging and discharging
Mathematical derivation of series formula (1/C = 1/C₁ + 1/C₂)
- Mathematical derivation of parallel formula (C = C₁ + C₂)
- Problem solving with capacitor combinations
- Practical verification using circuits
Problem solving with complex capacitor networks
- Analysis of charging and discharging processes
- Energy transfer calculations
- Graph interpretation of charging curves
Capacitors of different values, Voltmeters, Ammeters, Battery, Connecting wires, Calculators, Circuit boards
Charged capacitors, Energy calculation worksheets, Graphing materials, Calculators, Safety equipment
Complex circuit diagrams, Advanced problem worksheets, Graphing materials, Calculators, Past examination papers
Circuit diagrams, Smoothing circuit demo, Radio tuning circuits, Camera flash unit, Revision charts, Past examination papers
KLB Secondary Physics Form 3, Pages 188-191
KLB Secondary Physics Form 3, Pages 188-193
2 3
Heating Effect of Electric Current
Introduction to heating effect
Factors affecting heat produced - current and time
By the end of the lesson, the learner should be able to:
Define heating effect of electric current
- Explain mechanism of heat production in conductors
- Investigate effect of current on resistance wire
- Observe temperature changes in conductors
Q/A on electric current from previous units
- Experiment investigating effect of current on coil temperature
- Observation of heating in different parts of circuit
- Discussion on electron collision mechanism
Battery, Resistance wire coils, Ammeter, Variable resistor, Thermometer, Stopwatch, Connecting wires
Resistance coils, Variable resistor, Ammeter, Thermometer, Stopwatch, Graph paper, Different current values
KLB Secondary Physics Form 3, Pages 195-197
2 4
Heating Effect of Electric Current
Factors affecting heat produced - resistance
By the end of the lesson, the learner should be able to:
Investigate relationship between heat produced and resistance
- Compare heating in different resistance wires
- State H ∝ R relationship
- Derive complete heating formula H = I²Rt
Experiment using coils of different resistance
- Temperature measurements with constant current
- Comparison of heating rates
- Mathematical derivation of heating law
Coils of different resistance, Ammeter, Thermometer, Measuring instruments, Stopwatch, Calculation worksheets
KLB Secondary Physics Form 3, Pages 199-200
2 5
Heating Effect of Electric Current
Joule's law and electrical energy
Electrical power and energy calculations
By the end of the lesson, the learner should be able to:
State Joule's law of heating
- Derive H = I²Rt = VIt = V²t/R
- Calculate electrical energy and power
- Solve numerical problems on heating calculations
Discussion on Joule's heating law
- Mathematical derivations of heating formulas
- Problem solving on energy calculations
- Practical applications of heating law
Formula charts, Calculators, Problem worksheets, Electrical devices for analysis
Calculators, Unit conversion charts, Household appliance ratings, Electricity bills, Problem sets
KLB Secondary Physics Form 3, Pages 200-201
3 1-2
Heating Effect of Electric Current
Applications - electrical lighting and heating devices
Electrical safety - fuses and circuit protection
Efficiency calculations and motor problems
Series and parallel heating circuits
By the end of the lesson, the learner should be able to:
Describe working of filament lamp
- Explain choice of tungsten for filaments
- Describe working of electric iron, kettle and heaters
- Compare energy saving bulbs
Calculate efficiency of electrical devices
- Solve problems involving motors and mechanical work
- Analyze power input vs power output
- Calculate overall efficiency in systems
Discussion on filament lamp construction
- Analysis of heating device designs
- Examination of actual heating appliances
- Efficiency comparisons
Problem solving on device efficiency
- Motor efficiency calculations
- Analysis of energy conversions
- Real-world efficiency problems
Filament lamps, Electric iron, Electric kettle, Heating elements, Energy saving bulbs, Appliance diagrams
Various fuses, Fuse holders, Circuit diagrams, Safety equipment demonstrations, Rating calculations
Motor specifications, Efficiency calculation worksheets, Power meters, Mechanical loading systems
Resistors in circuits, Ammeters, Voltmeters, Power calculation sheets, Circuit boards
KLB Secondary Physics Form 3, Pages 202-203
KLB Secondary Physics Form 3, Pages 201-204
3 3
Quantity of Heat
Heat capacity and specific heat capacity
By the end of the lesson, the learner should be able to:
Define heat capacity and specific heat capacity
- State SI units for both quantities
- Distinguish between heat capacity and specific heat capacity
- Use formula Q = mcθ in simple calculations
Q/A on heat concepts from previous studies
- Discussion on definitions and units
- Comparison of heat capacity vs specific heat capacity
- Simple problem solving using Q = mcθ formula
Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison
KLB Secondary Physics Form 3, Pages 206-209
3 4
Quantity of Heat
Determination of specific heat capacity - method of mixtures for solids
Determination of specific heat capacity - electrical method
By the end of the lesson, the learner should be able to:
Describe method of mixtures for solids
- Perform experiment to determine specific heat capacity of metal
- Apply heat balance principle
- Calculate specific heat capacity from experimental data
Experiment using hot metal block in cold water
- Measurement of temperatures and masses
- Application of heat balance equation
- Calculation of specific heat capacity from results
Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer
Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply
KLB Secondary Physics Form 3, Pages 209-212
3 5
Quantity of Heat
Specific heat capacity of liquids and continuous flow method
Change of state and latent heat concepts
By the end of the lesson, the learner should be able to:
Determine specific heat capacity of water by electrical method
- Describe continuous flow method
- Explain advantages of continuous flow method
- Solve problems on specific heat capacity
Electrical method experiment for water
- Discussion on continuous flow apparatus
- Analysis of method advantages
- Problem solving on specific heat calculations
Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets
Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus
KLB Secondary Physics Form 3, Pages 214-217
4 1-2
Quantity of Heat
Specific latent heat of fusion
Specific latent heat of vaporization
Effects of pressure and impurities on melting and boiling points
By the end of the lesson, the learner should be able to:
Define specific latent heat of fusion
- Determine latent heat of ice by method of mixtures
- Perform electrical method for latent heat
- Calculate latent heat from experimental data
Investigate effect of pressure on melting point of ice
- Demonstrate regelation phenomenon
- Investigate effect of pressure on boiling point
- Explain effect of impurities on phase transition temperatures
Method of mixtures experiment using ice and warm water
- Electrical method using ice and immersion heater
- Heat balance calculations
- Determination of specific latent heat values
Regelation experiment with ice and wire
- Pressure effect on boiling point using flask
- Salt solution boiling point investigation
- Discussion on pressure cooker working
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment
Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model
KLB Secondary Physics Form 3, Pages 220-223
KLB Secondary Physics Form 3, Pages 227-230
4 3
Quantity of Heat
Gas Laws
Evaporation and cooling effects
Introduction to gas behavior and Boyle's Law
By the end of the lesson, the learner should be able to:
Define evaporation and distinguish from boiling
- Investigate factors affecting evaporation rate
- Demonstrate cooling effect of evaporation
- Explain applications of evaporation cooling
Experiments on evaporation rate factors
- Demonstration of cooling by evaporation using ether
- Investigation of surface area, temperature and humidity effects
- Discussion on natural cooling systems
Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper
KLB Secondary Physics Form 3, Pages 230-233
4 4
Gas Laws
Boyle's Law experiments and calculations
Boyle's Law applications and kinetic theory explanation
By the end of the lesson, the learner should be able to:
Perform experiment to verify Boyle's Law
- Record pressure and volume data
- Plot graphs of P vs V, P vs 1/V, and PV vs P
- Calculate pressure-volume products and verify constant relationship
Experiment using J-shaped tube with oil and pressure measurement
- Data collection and tabulation
- Graph plotting and analysis
- Verification of PV = constant relationship
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators
Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data
KLB Secondary Physics Form 3, Pages 235-238
4 5
Gas Laws
Charles's Law
Charles's Law applications and absolute temperature scale
By the end of the lesson, the learner should be able to:
State Charles's Law for constant pressure processes
- Demonstrate volume-temperature relationship
- Perform experiments to verify V ∝ T relationship
- Plot V vs T and V vs θ graphs
Experiment using gas column in tube with varying temperature
- Temperature and volume measurements
- Graph plotting showing linear relationship
- Discussion on absolute zero concept
Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment
Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios
KLB Secondary Physics Form 3, Pages 238-241
5 1-2
Gas Laws
Pressure Law (Gay-Lussac's Law)
Combined gas laws and ideal gas behavior
Kinetic theory of gases
By the end of the lesson, the learner should be able to:
State relationship between pressure and temperature at constant volume
- Demonstrate pressure-temperature experiments
- Verify P ∝ T relationship
- Derive pressure law formula
Combine all three gas laws into general gas equation
- Apply PV/T = constant for fixed mass of gas
- Solve complex problems involving multiple variables
- Explain ideal gas assumptions
Experiment using constant volume gas with temperature variation
- Pressure measurements at different temperatures
- Graph plotting of P vs T
- Verification of linear relationship through origin
Mathematical combination of gas laws
- Problem solving with changing P, V, and T
- Discussion on ideal gas concept
- Analysis of real gas deviations from ideal behavior
Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials
Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts
Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials
KLB Secondary Physics Form 3, Pages 242-244
KLB Secondary Physics Form 3, Pages 243-245
5 3
Gas Laws
Absolute zero and temperature scales
By the end of the lesson, the learner should be able to:
Explain concept of absolute zero temperature
- Extrapolate gas law graphs to find absolute zero
- Convert between temperature scales
- Analyze relationship between Celsius and Kelvin scales
Graph extrapolation to determine absolute zero
- Mathematical analysis of temperature scale relationships
- Problem solving with temperature conversions
- Discussion on theoretical and practical aspects of absolute zero
Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators
KLB Secondary Physics Form 3, Pages 241-245
5 4
Gas Laws
Comprehensive applications and problem solving
By the end of the lesson, the learner should be able to:
Solve complex multi-step gas law problems
- Apply gas laws to real-world situations
- Analyze atmospheric and weather-related phenomena
- Review all gas law concepts and applications
Comprehensive problem solving session
- Analysis of weather balloons, scuba diving, and atmospheric pressure effects
- Review of all gas laws
- Preparation for examinations with complex scenarios
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
KLB Secondary Physics Form 3, Pages 235-245
5 5
Uniform Circular Motion
Introduction and Angular Displacement
By the end of the lesson, the learner should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
KLB Secondary Physics Form 4, Pages 37-39
6 1-2
Uniform Circular Motion
Angular Velocity and Linear Velocity
Centripetal Acceleration
By the end of the lesson, the learner should be able to:
Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
KLB Secondary Physics Form 4, Pages 38-40
KLB Secondary Physics Form 4, Pages 40-42
6 3
Uniform Circular Motion
Centripetal Force and Factors Affecting It
By the end of the lesson, the learner should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
KLB Secondary Physics Form 4, Pages 42-47
6 4
Uniform Circular Motion
Experimental Investigation of Centripetal Force
By the end of the lesson, the learner should be able to:
Perform Experiment 2.2 investigating speed vs radius relationship; Plot graphs of F vs ω² and v² vs r; Analyze experimental results and draw conclusions; Understand the relationship F ∝ mv²/r; Apply experimental findings to solve problems
Q/A on previous experiment results; Setup and performance of Experiment 2.2 - variation of speed with radius; Data collection for different radii; Graph plotting and analysis; Verification of theoretical relationships; Group analysis of experimental errors and improvements; Application of results to problem solving
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets
KLB Secondary Physics Form 4, Pages 44-47
6 5
Uniform Circular Motion
Case Examples - Cars and Banking
By the end of the lesson, the learner should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
KLB Secondary Physics Form 4, Pages 47-50
7 1-2
Uniform Circular Motion
Case Examples - Cyclists and Conical Pendulum
By the end of the lesson, the learner should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
KLB Secondary Physics Form 4, Pages 50-52
7 3
Uniform Circular Motion
Motion in Vertical Circle
By the end of the lesson, the learner should be able to:
Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop)
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
KLB Secondary Physics Form 4, Pages 52-54
7 4
Uniform Circular Motion
Applications - Centrifuges and Satellites
By the end of the lesson, the learner should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
KLB Secondary Physics Form 4, Pages 54-55
7 5
Floating and Sinking
Introduction and Cause of Upthrust
By the end of the lesson, the learner should be able to:
Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
KLB Secondary Physics Form 4, Pages 58-63
8 1
Floating and Sinking
Upthrust in Gases and Archimedes' Principle
By the end of the lesson, the learner should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
KLB Secondary Physics Form 4, Pages 60-66
8-9

Midterm exam and break

9 4
Floating and Sinking
Law of Flotation and Applications
By the end of the lesson, the learner should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
KLB Secondary Physics Form 4, Pages 64-69
9 5
Floating and Sinking
Relative Density Determination
By the end of the lesson, the learner should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
KLB Secondary Physics Form 4, Pages 69-74
10 1-2
Floating and Sinking
Archimedes' Principle and Moments
By the end of the lesson, the learner should be able to:
Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
KLB Secondary Physics Form 4, Pages 71-74
10 3
Floating and Sinking
Applications - Hydrometer and Practical Instruments
By the end of the lesson, the learner should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
KLB Secondary Physics Form 4, Pages 74-77
10 4
Floating and Sinking
Applications - Ships, Submarines, and Balloons
By the end of the lesson, the learner should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
KLB Secondary Physics Form 4, Pages 77
10 5
Electromagnetic Spectrum
Introduction and Properties of Electromagnetic Waves
By the end of the lesson, the learner should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
KLB Secondary Physics Form 4, Pages 79-81
11 1-2
Electromagnetic Spectrum
Production and Detection of Electromagnetic Waves I
Production and Detection of Electromagnetic Waves II
By the end of the lesson, the learner should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations
Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
KLB Secondary Physics Form 4, Pages 81-82
11 3
Electromagnetic Spectrum
Applications of Electromagnetic Waves I
By the end of the lesson, the learner should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
KLB Secondary Physics Form 4, Pages 82-84
11 4
Electromagnetic Spectrum
Applications of Electromagnetic Waves I
By the end of the lesson, the learner should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
KLB Secondary Physics Form 4, Pages 82-84
11 5
Electromagnetic Spectrum
Applications of Electromagnetic Waves II
By the end of the lesson, the learner should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
KLB Secondary Physics Form 4, Pages 82-85
12 1-2
Electromagnetic Spectrum
Specific Applications - Radar and Microwave Cooking
Hazards and Safety Considerations
By the end of the lesson, the learner should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
KLB Secondary Physics Form 4, Pages 84-85
KLB Secondary Physics Form 4, Pages 85
13

End of term exams and school closure


Your Name Comes Here


Download

Feedback