If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Uniform Circular Motion
|
Introduction and Angular Displacement
|
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
|
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
|
KLB Secondary Physics Form 4, Pages 37-39
|
|
| 2 | 2 |
Uniform Circular Motion
|
Introduction and Angular Displacement
|
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
|
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
|
KLB Secondary Physics Form 4, Pages 37-39
|
|
| 2 | 3-4 |
Uniform Circular Motion
|
Angular Velocity and Linear Velocity
|
By the end of the
lesson, the learner
should be able to:
Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities |
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions
|
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 38-40
|
|
| 2 | 5 |
Uniform Circular Motion
|
Centripetal Acceleration
|
By the end of the
lesson, the learner
should be able to:
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems |
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
|
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
|
KLB Secondary Physics Form 4, Pages 40-42
|
|
| 3 | 1 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
|
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
|
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
|
KLB Secondary Physics Form 4, Pages 42-47
|
|
| 3 | 2 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
|
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
|
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
|
KLB Secondary Physics Form 4, Pages 42-47
|
|
| 3 | 3-4 |
Uniform Circular Motion
|
Experimental Investigation of Centripetal Force
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 2.2 investigating speed vs radius relationship; Plot graphs of F vs ω² and v² vs r; Analyze experimental results and draw conclusions; Understand the relationship F ∝ mv²/r; Apply experimental findings to solve problems |
Q/A on previous experiment results; Setup and performance of Experiment 2.2 - variation of speed with radius; Data collection for different radii; Graph plotting and analysis; Verification of theoretical relationships; Group analysis of experimental errors and improvements; Application of results to problem solving
|
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets
|
KLB Secondary Physics Form 4, Pages 44-47
|
|
| 3 | 5 |
Uniform Circular Motion
|
Case Examples - Cars and Banking
|
By the end of the
lesson, the learner
should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles |
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
|
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
|
KLB Secondary Physics Form 4, Pages 47-50
|
|
| 4 | 1 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
|
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
|
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
|
KLB Secondary Physics Form 4, Pages 50-52
|
|
| 4 | 2 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
|
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
|
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
|
KLB Secondary Physics Form 4, Pages 50-52
|
|
| 4 | 3-4 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
Motion in Vertical Circle |
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion |
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators |
KLB Secondary Physics Form 4, Pages 50-52
KLB Secondary Physics Form 4, Pages 52-54 |
|
| 4 | 5 |
Uniform Circular Motion
|
Motion in Vertical Circle
|
By the end of the
lesson, the learner
should be able to:
Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion
|
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
|
KLB Secondary Physics Form 4, Pages 52-54
|
|
| 5 | 1 |
Uniform Circular Motion
|
Applications - Centrifuges and Satellites
|
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
|
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
|
KLB Secondary Physics Form 4, Pages 54-55
|
|
| 5 | 2 |
Uniform Circular Motion
|
Applications - Centrifuges and Satellites
|
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
|
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
|
KLB Secondary Physics Form 4, Pages 54-55
|
|
| 5 | 3-4 |
Floating and Sinking
|
Introduction and Cause of Upthrust
|
By the end of the
lesson, the learner
should be able to:
Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally |
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust
|
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
|
KLB Secondary Physics Form 4, Pages 58-63
|
|
| 5 | 5 |
Floating and Sinking
|
Upthrust in Gases and Archimedes' Principle
|
By the end of the
lesson, the learner
should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids |
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
|
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 60-66
|
|
| 6 | 1 |
Floating and Sinking
|
Law of Flotation and Applications
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships |
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
|
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
|
KLB Secondary Physics Form 4, Pages 64-69
|
|
| 6 | 2 |
Floating and Sinking
|
Law of Flotation and Applications
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships |
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
|
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
|
KLB Secondary Physics Form 4, Pages 64-69
|
|
| 6 | 3-4 |
Floating and Sinking
|
Relative Density Determination
|
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
|
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 69-74
|
|
| 6 | 5 |
Floating and Sinking
|
Archimedes' Principle and Moments
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing |
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy
|
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
|
KLB Secondary Physics Form 4, Pages 71-74
|
|
| 7 | 1 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
|
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
|
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
|
KLB Secondary Physics Form 4, Pages 74-77
|
|
| 7 | 2 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
|
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
|
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
|
KLB Secondary Physics Form 4, Pages 74-77
|
|
| 7 | 3-4 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
Applications - Ships, Submarines, and Balloons |
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications |
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples |
KLB Secondary Physics Form 4, Pages 74-77
KLB Secondary Physics Form 4, Pages 77 |
|
| 7 | 5 |
Floating and Sinking
|
Applications - Ships, Submarines, and Balloons
|
By the end of the
lesson, the learner
should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels |
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
|
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
|
KLB Secondary Physics Form 4, Pages 77
|
|
| 8 | 1 |
Electromagnetic Spectrum
|
Introduction and Properties of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook |
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
|
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
|
KLB Secondary Physics Form 4, Pages 79-81
|
|
| 8-9 |
HALF TERM |
|||||||
| 9 | 2 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves I
|
By the end of the
lesson, the learner
should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations |
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
|
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
|
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 9 | 3-4 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves I
Production and Detection of Electromagnetic Waves II |
By the end of the
lesson, the learner
should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations |
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors |
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources |
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 9 | 5 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves II
|
By the end of the
lesson, the learner
should be able to:
Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations |
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors
|
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
|
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 10 | 1 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves I
|
By the end of the
lesson, the learner
should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications |
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
|
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
|
KLB Secondary Physics Form 4, Pages 82-84
|
|
| 10 | 2 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves I
|
By the end of the
lesson, the learner
should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications |
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
|
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
|
KLB Secondary Physics Form 4, Pages 82-84
|
|
| 10 | 3-4 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves II
|
By the end of the
lesson, the learner
should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication |
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
|
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
|
KLB Secondary Physics Form 4, Pages 82-85
|
|
| 10 | 5 |
Electromagnetic Spectrum
|
Specific Applications - Radar and Microwave Cooking
|
By the end of the
lesson, the learner
should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies |
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
|
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
|
KLB Secondary Physics Form 4, Pages 84-85
|
|
| 11 | 1 |
Electromagnetic Spectrum
|
Hazards and Safety Considerations
|
By the end of the
lesson, the learner
should be able to:
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use |
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
|
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
|
KLB Secondary Physics Form 4, Pages 85
|
|
| 11 | 2 |
Electromagnetic Spectrum
|
Hazards and Safety Considerations
|
By the end of the
lesson, the learner
should be able to:
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use |
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
|
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
|
KLB Secondary Physics Form 4, Pages 85
|
|
| 11 | 3-4 |
Electromagnetic Spectrum
Mains Electricity |
Hazards and Safety Considerations
Sources of Mains Electricity The Grid System and Power Transmission |
By the end of the
lesson, the learner
should be able to:
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use State the main sources of mains electricity Explain how different sources generate electrical energy Compare advantages and disadvantages of different power sources Describe the environmental impact of various power sources |
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
Prior knowledge review on electrical energy Discussion on local power sources in Kenya Field trip planning to nearby power station Group presentations on different power sources Q&A session on power generation methods |
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
Pictures of power stations Charts showing different energy sources Videos of power generation Maps of Kenya's power grid Sample coal, biomass materials Chart of national grid system Transmission line models Maps showing power lines Transformer models Voltage measurement devices |
KLB Secondary Physics Form 4, Pages 85
KLB Secondary Physics Form 4, Pages 117 |
|
| 11 | 5 |
Mains Electricity
|
High Voltage Transmission and Power Losses
|
By the end of the
lesson, the learner
should be able to:
Explain why power is transmitted at high voltage Calculate power losses in transmission State dangers of high voltage transmission Apply the formula P = I²R to transmission problems |
Review of Ohm's law and power formulas
Demonstration of power loss calculations Worked examples on transmission efficiency Discussion on safety measures for transmission lines Group problem-solving activities |
Calculators
Worked example sheets Pictures of transmission towers Safety warning signs Formula charts |
KLB Secondary Physics Form 4, Pages 118-121
|
|
| 12 | 1 |
Mains Electricity
|
Domestic Wiring System
|
By the end of the
lesson, the learner
should be able to:
Describe the domestic wiring system Identify components of consumer fuse box Explain the function of live, neutral and earth wires Draw simple domestic wiring circuits |
Q&A on transmission systems
Examination of house wiring components Drawing domestic wiring diagrams Identification of electrical safety features Practical observation of electrical installations |
House wiring components
Fuse box model Different types of fuses Electrical cables (samples) Circuit diagrams Multimeter |
KLB Secondary Physics Form 4, Pages 121-124
|
|
| 12 | 2 |
Mains Electricity
|
Fuses, Circuit Breakers and Safety Devices
|
By the end of the
lesson, the learner
should be able to:
Explain the function of fuses in electrical circuits Compare fuses and circuit breakers Select appropriate fuse ratings for different appliances Describe safety measures in electrical installations |
Review of domestic wiring components
Examination of different fuse types Calculation of appropriate fuse ratings Demonstration of circuit breaker operation Discussion on electrical safety |
Various fuses (2A, 5A, 13A)
Circuit breakers Fuse wire samples Electrical appliances Calculators Safety equipment samples |
KLB Secondary Physics Form 4, Pages 122-123
|
|
| 12 | 3-4 |
Mains Electricity
|
Ring Mains Circuit and Three-Pin Plugs
Electrical Energy Consumption and Costing |
By the end of the
lesson, the learner
should be able to:
Describe the ring mains circuit Explain advantages of ring mains system Wire a three-pin plug correctly Identify wire color coding in electrical systems Define kilowatt-hour (kWh) Calculate electrical energy consumption Determine cost of electrical energy Apply energy formulas to practical problems |
Q&A on fuses and safety devices
Drawing ring mains circuit diagrams Practical wiring of three-pin plugs Color coding identification exercise Safety demonstration with earthing Review of power and energy concepts Introduction to kilowatt-hour unit Worked examples on energy calculations Practice problems on electricity billing Analysis of electricity bills |
Three-pin plugs
Electrical cables Wire strippers Screwdrivers Ring mains circuit model Color-coded wires Calculators Sample electricity bills Electrical appliances with ratings Stop watches Energy meter model Formula charts |
KLB Secondary Physics Form 4, Pages 124-125
KLB Secondary Physics Form 4, Pages 125-128 |
|
| 12 | 5 |
Mains Electricity
|
Problem Solving and Applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems on power transmission Calculate energy consumption for multiple appliances Analyze electricity costs and savings Apply knowledge to real-life situations |
Review of all chapter concepts
Problem-solving sessions Group work on complex calculations Discussion on energy conservation Preparation for assessment |
Calculators
Problem sheets Past examination questions Real electricity bills Energy conservation charts |
KLB Secondary Physics Form 4, Pages 117-128
|
|
Your Name Comes Here